
MCR-81-515 NASA CR- 181641

[NASA-CR- 1816 41)

AND RELIABILITY

Corp.) 153 p

D I G IT AL

ANALYZER
AVIONICS DESIGN

[Martin Marietta

CZCL 09B

G3/62

N88-23472

U ncla s

0142951

i

•::_ .._
"¢. ', -.'5

-.rCS_

[_.%!

. J _J

]""_ >3
4.,,

"," .:'-'3

DIGITAL AVIONICS DESIGN AND

RELIABILITY ANALYZER

NASA LaRC NASI-15780

February 1981

Approved:

Edward C. Stanke, II

Program Manager

TABLEOFCONTENTS

1.0

2.0
2.1
2.2
2.3

3.0
3.1
3.2
3.3
3.4
3.5

4.0
4.1
4.2
4.3

Introduction

Applicable Documents

Reference Documents

Standards

Other

System Functional/Operational Description

Introduction

Usage Phases

Test Design Phase
Test Execution Phase

Data Reduction/Analysis Phase

System Specification

General System Configuration

Hardware Configuration

Software Configuration

Appendix A Hardware Composition Trade Study

Appendix B Microprogrammable Computer Trade Study

Attachment I Interim Technical Report

ii

Page

1-I

2-1

2-1

2-1

2-1

3-1
3-1

3-2

3-3

3-3

3-13

4-1

4-1

4-3

4-11

J

•%

Figure

3-i

3-2

3-3

3-4

3-5

3-6

4-1

4-2

List of Figures

Page

3-3

3-5

3-ii
oeeeoee*oeeleeo,eoee*'aee'oola'oe

................................ 3-14

• e•o••e•ea,.•e•,meloe,e•,'•ee'•

....... _-2
•eeeeeo,eeBe•eee•eeee•eee

iii

Table

A-I
B-I
B-2

List of Tables

Page

............................ A-_

iv

! .:

I.0 INTRODUCTION:

This document contains the description and specifications for a digital

avionicsdesign and reliability analyzer. It is the result of the study done

by Martin Marietta concerning the use of emulation for investigating

reliability and fault-tolerance issues for proposed highly reliable commercial

digital avionics systems. The study was contracted by the NASA Langley

Research Center because of the coming technology in commercial aircraft, which

largely precludes traditional approaches to certification.

Airframes for the 1990's are designed to be much more fuel efficient than

current designs, but this fuel efficiency is bought at a price of less

stability. To maintain safe flight, very reliable avionics computers are

envisioned to allow the necessary quick reaction times and continuous

monitoring of flight parameters.

_X

F .Z.,

--:_i_

_ ¢}

The computers are designed to break down so rarely (less than once in a

human lifetime) that conventional bench and field tests cannot certify their

reliability. The Federal Aviation Administration is in the process of

adopting new certification procedures that emphasize mathematical models and

simulations of the system over actual tests. To put the effort in

perspective, the computers will be predicted to break down less often than the

wings are expected to fall off planes in flight. The new avionics computers

must be significantly more reliable than today's avionics computers. They

...._ function unattended, despite hardware or software failures for at least

a 10-hour flight. This super-reliability will be gained through redundant
hardware and software. Faults that occurred will be Counteracted

automatically by hardware and/or software algorithms. As these highly fuel

efficient aircraft would fly i00 percent of the time in critically stable

conditions, control of the aircraft must be maintained concurrently with the •

fault detection and correction process. Further, any faults occurring during

the recognition and correction of a previous fault must be handled as well.

The hardware/software configuration described in this document is referred

to as the Digital Avionics Design and Reliability Analyzer. Its basic

function is to provide for the simulation and emulation of the various

fault-tolerant digital avionic computer designs that are developed. It has

been established that hardware emulation at the gate-level will be utilized.

The primary benefit of emulation to reliability analysis is the fact that it

provides the capability to model a system at a very detailed level. This

_means that rather than basing reliability analyses on manufacturer's supplied

data, or on expected probability distributions of failures of parts to

determine the response of a system, detailed models of a system may now be

employed on an experimental basis and system responses to faults observed

rather than predicted. Emulation allows the _irect insertion of faults into

the system, rather than waiting for actual hardware failures to occur. This

allows for controlled and accelerated testing of system reaction to hardware
failures.

This reporthas two primary sections. Section 3 is a description of the

functions of the system. This is intended to provide a perspective of the

system for the specification which follows in Section 4. Section 4 contains

the more definitive hardware and software requirements necessary to achieve

the goals and functions given in Section 3.

I-i

There are two Appendices and one Attachment. Appendix A is the trade

study which leads to the decision to specify a two machine system, including

an emulation computer connected to a general purpose computer. Appendix B is

an evaluation of potential computers to serve as the emulation computer.

Attachment I is the previously delivered Interim Technical Report. This

report details the feasibility study and describes in some detail the NASA

Langley gate level algorithm which provided the basis for most of the

performance figures required in the specification.

/!

. !

ii"

: ,,_--71

• _?2";
f . N_

-'<i

1-2

]

i

d

:7

:! "!

i'.d'_

-! si.._

!¢;£_!
_;, it:

i}:.:2

' -."2?

:!:"i?i
: __.3

2.0 APPLICABLE DOCUMENTS

2.1 Reference Documents

i) Feasibility Study Report, Digital Avionics Design and Reliability

Analyzer, November 1979.

2) Interim Technical Report, Digital Avionics Design and Reliability

Analyzer, February 1980.

3) System Design Progress Report, Digital Avionics Design and

Reliability Analyzer, July 1980.

2.2 Standards

l) Electronics Industries Association Standard RS-449

2) Federal Standard 1031

3) Electronics Industries Association Standard RS-232-C

4) American National Standards Institute X.3.9-1966

5) Federal Information Processing Standards Publication i

6) Federal Information Processing Standards Publication 2

7) Federal Information Processing _tandards Publication 3-1

8) Federal Information Processing Standards Publication 25

9) Federal Information Processing Standards Publication 16

i0) Federal Information Processing S_andards Publication 17

ii) Federal Information Processing Standards Publication 18

2.3 Other

To be furnished by the Government

2-1

3.0 SYSTEM FUNCTIONAL/OPERATIONAL DESCRIPTION

3.1 Introduction

This section is intended to provide an overall description of what the

system (including the analyst) must do without regard to the elements;

hardware, software or manual procedures, which allow it to be done. The

emphasis in this section is on the logical functions required for the digital

avionics design and reliability analyzer. To express these functions, we use

structured analysis tools and notation. I The notation which will be used

throughout this section is based on three elements: data flow diagrams,

mini-specifications, and the data dictionary.

3.1.1. Data Flow Diagrams

I

!:_ii
t

;::i!%!

•;!.:": i?

Data Flow Diagrams (DFD) are used to present the system pictorially thus

reducing the amount of narrative needed. A DFD is a network representation of

a system. The system may be automated,.manual, or mixed. The DFD portrays

the system in terms of its component functional pieces with all interfaces

among the components indicated. A DFD does not represent the flow of control

or the order of processing. Numbers used on the diagrams are for

identification purposes only. Data Flow Diagrams are made up of four-basic

elements:

i) Data flows, represented by na_ed vectors, are pipelines through which

packets of information of known composition flow.

2) Processes, represented by bubbles, are transformations of incoming

data flow(s) into outgoing data flow(s). Each process bubble needs a

descriptive name.

3) Data stores, represented by two straight horizontal lines, are

temporary repositories of data and may consist of tapes, discs, card

sets, index files, data bases,or even someone's memory.

_) Data sources and sinks, represented by boxes, are persons,

organizations, or other entities lying outside the context of a

system, that are net originators or receivers of system data. A
source box exists only to provide co,,nentary about the system's

connection to the outside world.

Data Flow Diagrams are expressed in levels. The first level, called the

Context Diagram is labeled Diagram 0 and portrays an overall picture of the

system with subsystems shown. These subsystems are labeled 1 through N. The

subsystems are broken down in separate DFDs and further described. The

components of the first subsystem are labeled I.i, 1.2, 1.3, etc. When a

subsystem has been decomposed to as simple a form as necessary, it is called a

functional primitive.

l. Tom DeMarco, Structured Anal_sis and S_stem Specification. New York;

Yourdon, 1978.

3-1

i

There are many advantages to using leveled Data Flow Diagrams. They allow

a top-down approach to analysis. By reading the top few levels one can get

the big picture, or one can begin with the abstract and go to the detailed and

narrow in on particular areas of interest. Each page is a complete

presentation of the area of work allocated to it. All diagrams can be

restricted to 8 I/2 X ii inch paper.

3.1.2 Mini-Specification

The second part of the system functional definition consists of the

Mini-Specifications which are concise descriptions of the bottom-level bubbles

(functional primitives). Each Mini-Spec describes rules governing

transformation of data flows arriving at the associated primitive into data

flows leaving it.

3.1.3 Data Dictionary

To augment the Data Flow Diagram, there is an entity called the Data

Dictionary. This contains rigorous definitions of all Data Flow Diagram

elements such as data flows, components of data flows, files, and processes.

These definitions relate all data elements through sequence, selection, or

iteration.

3.1.4 The structured analysis information in this section is _ugmented as

necessary by textual material to highlight important points.

f

f_, J

,/ '.

3.2 Usage Phases

The digital avionics design and reliability analyzer is intended to

support three primary uses:

i) Reliability analyses

2) Failure effects analyses

3) Conventional performance analyses

Regardless of their differences, each of these has several characteristics

in common with the others. Primary among these commonalities is the fact that

each involves data gathering which is facilitated by the technology of

emulation. As shown in Figure 3-1, there are 3 basic phases of each use.

These phases are:

I) Test design

2) Test execution

3) Data reduction/analysis

f;+ 3-2

q

_i__

i•i_'_L

Start

Test _ Data

 ate
Figure3-1 FacilityUsePhases Stop

These phases are shown in a different form in the Context Data Flow

diagram given in Figure 3-2. In this diagram, the results of each phase are

shown. Test design encompasses processes 1 and 3, test execution is process 2

and data reduction is process 4. Model building, process I, is an inherent

part of test design and so is not considered a separate phase in itself.

3.3. Test Design Phase

The modeling part of the Test Design Phase is shown graphically in Figure

3-3_ and described in the process descriptions. One key concept which needs

highlighting is the division of a system into functional blocks. This

partitioning is necessary due to the time constraints of emulating at the gate

level. Based on the results of the feasibility study (see Attachment i), it

is impossible to emulate the gate structure of the entire system under test.

Thus the mixed mode concept, where the system is simulated at a functional
level until a fault is inserted at which time the functional simulation of the

affected block is replaced with a gate level emulation of that block.

Following Figure 3-3, Figure 3-4, and Figure 3-5 are mini-specifications

describing each process shown in these figures.

One other concept not shown explicitly concerns the redundant computations

which occur in a fault tolerant computing system. In a model, there is no

necessity of actually performing redundant operations until one of the

redundant paths errs (due to the introduction of a fault). This concept

arises also during the Test Execution.

3.4 Test Execution Phase

The Test Execution Phase is shown in Figure 3-5. As noted in 3.3, the

actual execution uses a combination of functional level simulation and gate
level emulation of the machine under test.

3-3

s

,!

.'7

tl
I

L

-'-_ I-

! o

°-

o
I,,,.

e_

N

l,i=

I.I-

3-4

I

", :,2

1

3-5

,.

(!

?

/!

r,,,: i

PROCESS: I. I, Subdivide System

;PROCESS SPECIFICATION

IF model-lnformation CONTAINS "gate-level-model-needed" THEN

CREATE functional-block USING system-block-dlagrams

DEFINE system-boundry USING functional-block

DEFINE Internal-interfaces USING (functlonal-block AND

system-block-diagrams)

ELSE

DEFINE internal-interfaces USING system-block-diagrams

ENDIF

DEFINE external-interfaces USING system-block-diagrams

ENDPROCESS -

PROCESS: 1.2, Produce Gate Level Model

°;PROCESS SPECIFICATION

IF model-lnformation CONTAINS "gate-level-model-needed" THEN

FOR EACH functional-block IN system-boundries DO

CREATE block-gate-model USING system-logic-dlagrams

TRANSLATE block-gate-model TO block-gate-table

ENDFOR

ASSEMBLE gate-level-model FROM block-gate-tables
ENDIF

ENDPROCESS

PROCESS: 1.3, Produce Functional Model

;PROCESS SPECIFICATION

FOR EACH Functional-block IN system-boundries DO

CREATE (block-functional-model AND interface-behavior-model) USING

(system-functional-descrlption AND internal-interfaces)

TRANSLATE (block-functional-model AND Interface-behavior-model) TO

(functional-level-simulation-code AND functional-level-symbol-table)

ENDFOR

ASSEMBLE functlonaI-leve]-modeI FROM (functlonal-level-simulation-code AND

functlonal-level-symbol-table)

CREATE code-generation-descriptlon USING system-functional-description

ENDPROCESS

ORIOI_AI_ PXGE IS

OF POOR QUALITY

3-6

L

, j

PROCESS: 1.4, Define Model Specifics

;PROCESS SPECIFICATION

IF model-type-needed CONTAINS "gate-level-model-needed" THEN

SET model-information TO "gate-level-model-needed" +
"model-subdivision-needed"

ELSE

SET model-information TO "monolithic-model-needed"

ENDIF

ENOPROCESS

t

)

:!
r..

• °

'i:J

• ,o

• " • . ,T::
•.m' 'J,

•__,_.'_

r.-,

:2_?;!

PROCESS: 1.5, Produce Model Interconnectton

;PROCESS SPECIFICATION

FOR EACH system-boundry DO

DEFINE boundry-lnformation USING (system-block-diagrams AND

system-logic-diagrams)
ENDFOR

ENDPROCESS

PROCESS: t.6, Produce Loadable Software

;PROCESS SPECIFICATION

FOR EACH test-software DO

TRANSLATE test-software TO (machine-object-code AND symbol-table)

USING code-generation-description
ENDFOR

ASSEMBLE loadable-software FROM (machine-object-code AND symbol-table)

ENDPROCESS

PROCESS: 1,7, Produce Environmental Model

;PROCESS SPECIFICATION

CREATE environmenta|-model-description USING

system-envlronmental-description

TRANSLATE environmental-model-description TO executable-environmental-model

ENDPROCESS

3-7

g,P

t,- | t"g _._

"_ .__..

\
==..

i'm

e-
_m

E
a_

i

i

;)

i

-i

' ::{

j_

.:.';

,.. _?

Y<"

;.._-_:_;_

-:ii

.... t

-... |

PROCESS: 3.1. Determine Data to be Collected

;PROCESS SPECIFICATION

IF type-result-needed = reliability-number THEN
DETERMINE confidence-level-desired

CALCULATE number-of-samples-necessary FROM confidence-level-desired

DETERMINE type-data-necessary /* for statistical reduction */

DETERMINE (type-of-failure-desired AND desired-failure-distribution)

ELSE

IF type-result-needed = failure-effects-analysis THEN

DETERMINE number-of-samples-necessary

DETERMINE type-data-necessary FROM failure-mode-of-interest

FOR EACH number-of-samples-necessary DO

DETERMINE type-ofofailure-desired
ENDFOR

ELSE

IF type-result-needed = performance-characteristic THEN

DETERMINE type-data-necessary /* for specific characteristics */
ENDIF

ENDIF

ENDIF

ENDPROCESS

PROCESS: 3.2, Define Model Characteristics

;PROCESS SPECIFICATION

IF type-data-necessary,IN data-desired CONTAINS "gate-performance" THEN
SET model-type-needed TO "functiona]-model-needed" +

"gate-level-model-needed"

ELSE

SET model-type-needed TO "functional-model-needed"
ENDIF

ENDPROCESS

PROCESS: 3.3, Determine Instrumentation Points

;PROCESS SPECIFICATION

DETERMINE instrumentation-points IN (e×ecutable-environmental-model AND

functional-level-model) USING

type-data-necessary IN data-desired

IF type-data-necessary IN data-desired CONTAINS "gate-performance" THEN

DETERMINE instrumentation-points IN gate-level-model
ENOIF

ENDPROCESS

3-9

-,j

i

PROCESS: 3.4, Define Data Recording Directives

;PROCESS SPECIFICATION

FOR EACH instrumentation-point DO

DEFINE data-recording-directives USING data-desired

ENOFOR

ENDPROCESS

1

::'_i

.i
,I

'i
- ?

. n..:l

E:,I

-_

•-:}

F,t
>)

_ :2:!

i , tii_?

? - :" j')

'!I
;",?"t

' "" !: 'i

,_. T i

• 2: :_

2:. 'i:;

PROCESS: 3.5, Define Test Sequence

;PROCESS SPECIFICATION

IF type-result-needed = reliability-number THEN
FOR EACH number-of-samples-necessary DO

DETERMINE faults-to-be-Inserted FROM (desired-failure-distribution AND

specific-system-portion-of-Interest)

ENDFOR

ELSE

IF type-result-needed = failure-effects-analysis THEN
DETERMINE faults-to-be-inserted FROM (type-of-failure-desired AND

specific-system-portion-of-interest)

ENDIF

ENDIF
DETERMINE environmental-mode]-dtrectives /* for desired test */

ENDPROCESS

3-I0

-)j

...,:

F

"i

, E _1 ,
::l _,_ " ,

,|

? -- J
•" / "_ = :El

-_1 - E _ :_1

._ a_l o _ _ • I .'-• 1 _ ." _ ,'1 ?

=_ =._ 8 _
"--'4 E "'_ - _ _-I_ _1 _- I
/ _. _ /=,=_1 _ I

• _,n _- 0 / m Q) I -_-' _. I

I_ <_ /_,1 _v;I

3-11

PROCESS: 2.1, Load Software

;PROCESS SPECIFICATION

ASSEMBLE configured-system FROM (executable-environmental-model +

(functional-level-model ÷ (gate-level-model +

(boundry-informetion + 1oadable-software))))

ENDPROCESS

:5

•"K

i .,h

t __..-_;zd

 !:ii:i

PROCESS: 2.2, Instpument System

;PROCESS SPECIFICATION

FOR EACH data-recording-directive DO

IF data-recording-point = "symbol" THEN

FIND insertion-point IN symbol-table

ELSE

IF data-recording-point = "target-memory-location" THEN

FIND Insertion-point USING functional-level-symbol-table
ENDIF

ENDIF

CHANGE machine-object-code TO "trap"

OUTPUT instrumented-system
ENDFOR

ENDPROCESS

PROCESS: 2.3, Run Test

;PROCESS SPECIFICATION

IF test-directive CONTAINS "load-saved-state" THEN

RETRIEVE saved-state FROM saved-star:e-data-base

ENDIF

FOR EACH test-directive DO

/* execute test directive */

ENDFOR

ENDPROCESS

3-12

3.5 Data Reduction/Analysis Phase

The Data Reduction/Analysis Phase is shownin Figure 3-6. For failure

effects analysis or conventional performance analysis, this phase consists

mostly of grouping and analyzing collected data to determine actions, trends,

etc. For reliability analysis, this phase consists of data reduction and

statistical analysis, followed by the use of the results in a reliability

model of the system.

3.6 Data Dictionary

The Data Dictionary follows Figure 3-6 and defines all terms used in the

data flow diagrams as well as the mini-specs. For the Data Dictionary, the

following symbols indicate:

/• J

.. ?i

:L=;::,!

l)
2)

3)
4)
5

= is composed of

() optional item

[a b _ alternative items

n [_ m iterations of with optional lower (n) and upper (m) limits
+ and

3-13

.1--./ll

• !'_ '%i

E1 _ ,_--3 ,'- I-%
/ - /==1 !
=.,1 _ I1 t l

t _ I + t T _ ®'-c- .
1 ..I-,,," _1 -_ I _1

.w . I _ _ I I I_;_

= _ , .,-.
,..® $= ._'_

Q,1 "l I :_,-l,-I_l __l _l. =
I_l-=_÷ I ___l N I_

• !_ _ _ "_ _I _IN_I _L_ _1_ =_
• ": "_ I / \ '- I _" _

E

I

''s _

i- l "

3-14

PROCESS: 4.1, Determine Analysis to Perform

;PROCESS SPECIFICATION

IF type-result-needed CONTAINS reliability-number THEN

OUTPUT reliability-results-needed
ELSE

IF type-result-needed CONTAINS failure-effects-analysis THEN

OUTPUT failure-effects-needed

ELSE

IF type-result-needed CONTAINS performar_ce-characteristic THEN

OUTPUT performance-characteristics-desired

ENDIF

ENDIF

ENDIF

!

..j

J_
-2]

.;!):?

'-;-;)i

:.L',M

•i;;??

• ,_ .;

ENDPROCESS

PROCESS: 4.2, Reduce Execution Data

:PROCESS SPECIFICATION

ASSEMBLE execution-data USING performance-characterlstics-desired

EXTRACT performance-measure

ENDPROCESS

PROCESS: 4.3, Analyze Effects of Inserted Faults

;PROCESS SPECIFICATION

FOR EACH faults-to-be-inserted IN execution-data DO

DETERMINE (effect-of-fault AND propogation-of-fault) USING execution-data
OUTPUT failure-effects-result

ENDFOR

ENDPROCESS

PROCESS: 4.4, Reduce and Group Execution Data

;PROCESS SPECIFICATION

ASSEMBLE execution-data USING specific-system-portion-of-interest

CHANGE execution-data TO composite-execution-data

ENDPROCESS

3-15

pROCESS: 4.5, Run Reliability Analysis

;PROCESS SPECIFICATION

/* Run reliability model using composite-execution-data "/

CALCULATE predicted-reliability-number USING (composite-execution-data +
confidence-level-desired)

ENDPROCESS

:!

4

"4

:i

4

• 9

. i:-:," }

:!;C

i;_"4

• i

'1

: i

..-;!]
•:Z.i

.X

3-16

!

,i

i
;!
i'(

• •T

DATA DICTIONARY

actuator-description = SELF_DEFINING /* description of actuators */

analysis-result = [performance-measure I reliability-number I
failure-effects-result]

block-functional-model = SELF DEFINING /* description of the behavior of
each functional block =/

block-gate-model = SELF DEFINING /* machine readable version of system logic
diagrams broken into functional
blocks */

block-gate-table = _gate-tnfo_

block-gate-tables = tblock-gate-table]

b|ock-number = SELF DEFINING /* id of the block thts gate ts in */
boundry-information = SELF DEFINING /* list of inputs and outputs to system */

code-generation-descriptio_ = op-code-tnformatton + Instruction-formats

compostte-e.xecution-data = _execution-data]

confidence-level = number

confidence-level-desired = percentage

configured-system = executable-environmental-model + gate-level-model +
functional-level-model + boundry-tnformation +

loadable-software

current-gate-value = ["O" I "1" I "undefined" I "trt-state"]

data-desired = [number-of-samples-necessary + type-data-necessary +

confidence-level-desired + type-of-failure-desired +
tdestred-failure-dtstrtbutionl I type-data-necessary] +

specific-system-portion-of-Interest

data-recording-directive'= data-recording-point + data-to-be-gathered +
[time-!Rterva! I ttme I system-significant-event] +

output-device + output-format
data-recording-directives = _data-recordJng-dtrective}

date-recording-point = ["symbol" I "target memory location"]

data-recording-points = (data-recordtng-potnt}

data-to-be-gathered = SELF_DEFINING /* this item left unspecified since it
could be wtde range of possibilities,

ranging from modeled ttems to actual
items in the mocleling machine */

desired-failure-distribution = probability-distribution

desired-performance-information = SELF DEFINING /* this ts the performance
characteristic which we need to ascertain.

Since the possibilities are numerous, this
definition is not constrained. */

duration-of-fault = number
effect-of-fault = [stuck-at-fault I transient-fault]

environmental-model-description = [sensor-description] + {actuator-description}

+ toutput-device-description} +

_tnterconnectton-descrtption}

environmental-model-directive = initial-value + range-limits
environmental-model-directives = _envtronmental-model-dtrective}

environmental-model-performance = time + sensor-state

environmental-simulation-code = machine-object-code

environmental-symbol-table = symbol-table
event-identifier = ["sensor out of bounds" I "machine parameter out of bounds" I

system-significant-event]

3-17

<i

::!
:!

DATA DICTIONARY (CONT)

i

<::!:5
.:"

:_'2

• :.'2

[.'.5

• ,? i

executable-environmental-model : environmental-simulation-code +

environmental-symbol-table
execution-data = i{run-id + [reliability-sample-data I performance-sample-data

I failure-effects-samp]e-data]}

execution-time = number

external-input = SELF_DEFINING /* this is an input from the system from the
outside world. No restrictions are placed on
its form or contents */

externai-lnterfaces = Zexternal-input_ + {externa]-output_

external-output = SELF DEFINING /* this is an output to the outside world.

No restrictions are placed on its form or

content. */

failure-effects-anaIysls = "failure effects needed" +

specific-system-portion-of-interest + type-of-fal]ure-desired

failure-effects-needed = specific-system-portion-of-interest +
type-of-failure-desired

failure-effects-result = _faults-to-be-inserted + propogation-of-faultl

failure-effects-sample-data = f_initial-state-data ÷ l{faults-to-be-inserted +

tgate-behavior-data]}J

failure-mode-of-interest = failure-effects-analysis + faults-to-be-inserted
fault-insertion = "fault inserted" + faults-to-be-inserted

faults-to-be-inserted = location-of-fault ÷ time-of-fault + effect-of-fault

+ duration-of-fault

functional-block = subsystem + internal-interfaces
functlonal-blocks = _unctlonal-block}

functlonal-element-performance = SELF_DEFINING /* performance measures of some

portion of the system. This

item is so variable, it is not

specified in detail */
functional-level-model = functional-level-simulation-code +

functional-level-symbol-table

functional-level-simulation-code = machine-object-code

functional-level-symbol-table = symbol-table

gate-behavior = last-gate-value + current-gate-value

gate-behavior-data = gate-id + machine-cycle + gate-behavior

gate-td = block-number + gate-number

gate-tnfo = gate-state-tnfo + {gate-output}
gate-interconnection-tabIe = {gate-td ÷ {gate-td_

gate-level-model = _block-gate-table} + {gate-tnterconnection-table} +

gate-symbol-table

gate-number = SELF DEFINING /* td of this gate within its block */
gate-output = SELF_DEFINING /* pointer to one of this gates outputs */

gate-performance = {gate-behavfor-_ata]
gate-state-info = gate-type + gate-value

gate-symbol-table = symbol-table

gate-type = ["AND" I "OR" I . NAND" I "NOR" I "INVERT" I "XOR" I "FLIP-FLOP"]

gate-value = ["O" I "1" t "undefined trl-state"]
initial-state-data = time + {external-input} + _externa_-outpbtJ +

_sensor-state} + _tnternal-state_
initial-value = SELF DEFINING

insertion-point = maChine-object-code-location

3-18

- DATADICTIONARY(CONT)

i

-t
-.4

i

-j

.- :3i

;J

,,,% .,>

:, -,71

I

....>:i

i::i/,!

/i
. L, !

J

. < '_
'i

insertion-points : _insertion-polnt_

instruction-formats = SELF DEFINING /* information concerning addressing modes,

bit patterns, etc as needed by the

code generator */

instrumentation-point = machine-object-code-location

instrumentation-points = _instrumentation-point_

instrumented-system = _machine-object-code} + [data-recording-points} +
[instrumentation-points_

tnterconnection-descr'iption = SELF_DEFINING /* description of how sensors,
actuators, output devices are connected

to the test system */

interface-behavior-mode] = SELF DEFINING /* list of interconnections between
functional b|ocks */

internal-tnterfaees = SELF DEFINING /* connecttona between blocks */
internal-state = _machine-statej

interrupt = SELF_DEFINING

last-gate-value = ["O" I _I" I "undefined" I "tri-state"]

loadable-software = _machine-obJect-code + symbol-table_

]ocatlon-of-fault = gate-id

Iower-llmlt = SELF DEFINING

machlne-cycle = SEEF_DEFINING /* id of the current machine cycle */

machlne-object-code = SELF DEFINING

machlne-object-code-location = number

machine-state = SELF_DEFINING /* this is the state of the computer, including

registers, memory, mode and any other

parameters necessary to describe the current
status of the machine itself */

mode)-tnformation = ["gate-level-model-needed" I "model-subdivision-needed"
J "monolithic-model-needed"]

model-type-needed = "functional-model-needed" + ("gate-level-model-needed")
number _ SELF DEFINING

number-of-samples-necessary = number

op-code-information = SELF_DEFINING /* information concerning op codes as

needed by the code generator */

output-device = ["disk" I "tape" I "console" I "line printer"]

output-device-description = SELF_DEFINING /_ description of any other system
output devices */

output-format = ["decimal" I "octal" I "hexidecima]" I "binary" I

"unformatted"]

percentage = number

performance-characteristic = "performance information needed" +

deslred-performance-lnformation

performance-characteristics-desired = speciflc-system-portlon-of-lnterest

performance-measure = SELF_DEFINING /- this will depend on the type of measure

desired, this is highly varlable so

no enumeration is given here */

performance-sample-data = l_intttal-state-data + [Significant-event-data_

predicted-reliability-number = number + confidence-level

probability-distribution = SELF DEFINING

propogation-of-fault = _gate-behavior-data(

3-19

. ..'._

i

!

• i"_ _

, h,!

• i

DATA DICTIONARY (CONT)

range-limits = upper-limit + lower-limit

rellability-number = "reliability number needed" + confldence-level-desired

reliability-results-needed = confidence-level-desired

reliability-sample-data = l_sample-number ÷ initial-state-data +

tsignificant-event-dataI_
run-id = number

sample-number = number

saved-state = [configured-system J instrumented-system] + time +
e×ternal-interfaces + tsensor-state3 + _tnternal-stateE

saved-state-data-base = {saved-state_

sensor-description = SELF_DEFINING /_ description of what sensor is and how it

behaves. May be text _/
sensor-state = SELF DEFINING /* this is the current state of the sensor as

defined by some parameters such as orientation,

or by its output values */
significant-event-data = time + _external-inputt + [external-output_ +

_sensor-state} + _tnternal-state_ + event-identifier

specific-system-portion-of-interest = functional-block

stuck-at-fau]t = [stuck-at-one-fault I stuck-at-zero-fault I
stuck-at-indeterminate-fault]

stuck-at-indeterminate-fault = SELF_DEFINING
stuck-at-one-fault = SELF DEFINING
stuck-at-zero-fault = SEL_ DEFINING

subsystem = SELF_DEFINING 7* any reasonable chunk of the system which can be
isolated as an identifiable piece _/

symbol-table = insertion-points + instrumentation-points
/* + a bunch of other stuff _/

system-block-diagram = SELF DEFINING /- block diagram of the system of interest

showing major components and their
Interfaces */

system-block-diagrams = _system-b]ock-dtagram_

system-boundries = _ system-boundry_

system-boundry = _functional-block] + _interna]-Jnterfaces] +
external-interfaces

system-environmental-descrlption = SELF_DEFINING /* descriptioh of the behavior

of the system external

environment including all

input and output */

system-functiona]-descrtption = SELF DEFINING /* description of the functional
level behavior of the system,

including instruction fetch and

decode of the computer(s) ,/

system-logic-diagram = SELF DEFINING
system-logic-diagrams = _system-logic-dtagram_

system-mode] = executable-environmental-model + functional-level-model +

(gate-level-model) + boundry-tnformation

system-significant-event = [interrupt I trap I fault-insertion]

test-conduct-directive = initial-state-data + execut|on-ttme + sample-number
test-directive = {faults-to-be-inserted] + _environmental-model-dtrecttve_

+ _test-conduct-directive]

3-20

F_

"i

-.0

4

•4

-711

_j
.:/!

,,..,

'-1:2iL__

,-(,;

, : ',,-_
"7.

.'• T:*:
T. ; ::;J

• ' ,4

DATA DICTIONARY (CONT)

test-directives = Etest-directiveJ
test-software = SELF_DEFINING /* source software for the system under test */
test-system-definition = system-environmental-description +

(system-logic-diagrams) + system-functional-description +

test-software -I. system-block-diagrams

time-= number

time-interval = number

time-of-fault = number

transient-fault = SELF DEFINING

trap = SELF_DEFINING /; this is the occurrance of a system trap inserted for

the purposes of recording data or some such reason */

trap-insertion = SELF DEFINING

type-data-necessary =--(gate-performance) + (functional-element-performance) +

(environmental-model-performance)

type-of-failure-desired = [stuck-at-fault I transient-fault]

type-result-needed = [performance-characteristic I failure-mode-of-interest

I reliability-number] + specific-system-portion-of-interest

upper-limit = SELF_DEFINING

3-21

i__

:!

r_

i1

?i

4.0 System Specification

4.1 General System Configuration

This specification describes the requirements for the digital avionics design

and reliability analyzer. This facility consists of two major hardware

itemsas shown in Figure 4-1, a general purpose computer providing user support

and in_erface, simulation, and numerous other pieces of software; and an

emulation computer to provide either gate level emulation or general
instruction level hardware emulation. These two computers are interfaced for

synchronization and data transfer. The software for the facility is shown in

diagram 4.2. Of the five major components only a small part of the general

purpose support software, the model building software and the test execution

software run on the emulation computer. The major portion of the software

runs on the general purpose computer.

Digitizing
Board

,<C7",,
/ ul:_r, \ / ,ay= \

" I (Drives | (Drives |
operat°rI \ (2) J \ (z))

• Console __

Graphic Workstation __ / , "

Iii i r!
/l E'ectrostat'c / X

--I _lr_tr_teer/_ / I L_ine J

Figure 4-1 System Hardware Components -

Emulation

Computer

4-1

>.Y-_

J

:_!,]

, > "t

i ,;_!>;>_i!

i' ''¸%_̧

E_

0_

! I I

I C=

°_

_.,,,

w

0_

.,_
- _ _ _>_=o=_

, . _ _'-_ 2_

! I

I

o_

__ _ .__ = _ _._
•- _

I I I

4-2

j

_i̧4

:.'.74

-.._?,

i?:c_

"-:-:77_.[i
...... 3:31
Tf.:'

;':i:3['3]

: ::°.:.i 1

• 2 i

3 :'3:,!

4.2 Hardware Configuration

The system shall consist of two cooperating machines connected via an
interface. These machines shall be:

1) A general purpose computer providing user interface; software support

such as editors, assemblers, compilers, simulation support; and

analysis support.

2) An emulation computer supporting emulations ranging from gate level
to instruction level.

4.2.1 General Purpose Machine

4.2.1.1 Central Processor

4.2.1.1.1 The system shall have a real-time clock (interval timer) for use by

the operating system

4.2.1.1.2 Machine hardware instructions shall include integer, single and

double precision floating point, packed-decimal, character string

manipulation, bit shifting and rotating, and logical instructions.

4.2.1.1.3 Hardware fault detection shall be provided, i.e., detection of

d_,_d= _y _=_, exponent u,=_u,, =_ exponent _d=_fl_..

4.2.1.1.4 The system shall detect a power failure or fluctuation and have the

capacity to provide for an orderly system shutdown. Upon re-establishment of

stable power, automatic restart of the system must be provided for. This

requirement may be met by battery back-up to maintain proposed MOS (metal

oxide semiconductor) memory allowing for operator notification and

intervention. The system must be maintained for a long enough period to

permit any necessary steps to be accomplished to allow for restart of the

system and user programs.

4.2.1.1.5 The architecture of the system shall be based on a computer with

effective addressing, register size, and interger arithmetics of at least
sixteen (16) bits.

4.2.1.1.6 The general purpose computer shall have the speed and power

necessary to execute the enviror_nental model and the functional level model

specified in 4.3.2.1 in the normal operating mode, cooperating with each

other, at a slow down of not more than 3000 times real time.

•4.2.1.2 Memory

4.2.1.2.1 The memory requirements stated are in terms of bytes. A byte is

defined as the alphanumeric character oriented unit of measure composed of a

least eight (8) bits. Manufacturers whose internal architecture is such that

they normally operate with less than 8 hit bytes must adjust their bytes or

words of memory proposed to reflect the 8 bit requirement. Memory single word

size must be at least sixteen (16) bits available to user programs.

4-3

4.2.1.2.2 The initial configuration must be a minimum of one-half (1/2)

million bytes of main memory. The system architecture shall not preclude a

single user program from utilizing the full complement of main memory beyond

the residency requirement of the operating system and related software.

Both hardware and software shall support two (2) million bytes of physical

memory for expansion purposes.

4.2.1.2.3 Areas or regions of memory shall be memory protected to facilitate

the protection of the operating system and individual user programs. This

requirement may be met by any combination of hardware and/or software features.

4.2.1.2.4 Single bit fault correction and multiple bit fault detection shall

be provided.

All detected memory faults shall be logged by the system. This log shall be

accessible by either a vendor, customer engineer, and/or government personnel.

4.2.1.2.5 The rationale for the one-half (1/2) million bytes of main memory

is as follows:

I) Traditionally, interactive graphics systems tend to be complex and to

require significant amounts of memory to operate effectively. The

interpretive graphic subsystem is only a small portion of the total

system and will undoubtedly have to operate concurrently periodically

with other tasks. Even if operating by itself, it is quite

conceivable that once in a production mode that multiple digitizing

stations will be required.

2) As detailed system design has not been completed, it is difficult to

predict with an accuracy the ultimate memory requirement of the test

execution software. The following items will need to be memory

resident for the test execution and in total will he significant in

terms of memory required:

a. Fault tolerant target machine object code.

b. Compiled hardware description code for the target machine.

c. Actuators/sensors values and associated bound limits.

d. Fault data being introduced.

The fault tolerant target machines will be complex in terms of having

redundant hardware components and significant associated control/management
software.

3) With anticipated run times of test execution software to be in terms

of hours or days, throughput can not be significantly degraded due to

excessive page thrashing and/or overlay roll-in and roll-out. The

requirement for physical memory to be expandable to two (2) million

•bytes is to keep execution times within reason as the fault tolerant

systems under study become more complex.

4-4

4

f

5

p•i___'_

4.2.1.2.6 Memory allocation shall be dynamically allocated with the ability

to support at least four (4) interactive devices concurrently at installation

time and expandable to eight (8). A minimum of two (2) batch jobs must run

concurrently with the interactive users. The environment is to be that of

true multiprogramming, i.e., a fixed partition foreground/background

environment specifically shall not be permitted.

4.2.1.3 Disk Storage

4.2.1.3.1 Five-hundred (500) million 8 bit bytes of removable and

interchangeable formatted disk storage shall be available to the users of the

system. Disk storage required for system software is in addition to this

requirement. This d_sk space for the system shall be expandable by a factor

of two (2).

4.2.1.3.2 Average access time including latency and seek time, shall be 55
milliseconds or faster. The transfer rate shall not be less than 800,000

8-bit bytes per second.

4.2.1.3.3 The vendor shall provide an initial complete set of recording

media, as well as a complete backup set, both containing no more than 0.01%

unnacceptable sectors per unit.

4.2.1.3.4 A minimum of two (2) physical drives are required.

4.2.1.3.5 The five-hundred (500) million 8-bit bytes of removable and

interchangeable formatted disk storage for the user is considered justified

for the following reasons:

I) Disk I/O spooling area for local print output. It'is anticipated

that the various report products shall be maintained on disk for

several work days during their review, the rationale being to save

computer run time in the event that additional copies are required

for further study and distribution.

2) Provision for multiple files of gate level logic diagrams with

associated legend. These files represent the various portions of the

target fault-tolerant computer system under evaluation. Different

portions of the target fault-tolerant computer system will be at

different stages of the capturing and editing of gate level logic

diagrams via the interactive graphics subsystem.

3)

4)

5)

Program source code library.

Program object code library.

Multiple gate queueing structure tables in emulator computer

compatable format.

6) Multiple fault data files.

4-5

:S
r

' .|
- :{!

-!

?

/.

.<
7J

<. _:I

-£

.:: ;5
: ,,j

£-<.:j

<-:,,f{

t 'i

-::. ,

" .;:2.

-,Jq

_)

8)

9)

tO)

ll)

12)

13)

Multiple files of the initial conditions and bound limits of the

avionic actuators and sensors of the fault tolerant systems under

study.

Multiple hardware configuration descriptions defining various fault

tolerant system options.

Library of procedure files and parameter files.

Data files associated with mathmatical and statistical analysis

routines.

As the mechanical/electronic nature of disk drives require frequent

maintenance, the requirement of two physical spindles was specified

to allow some work to continue when one drive in unavailable.

Admittedly, the capability will require careful organization of the

disk files.

Further, utilizing a large capacity disk drive allows achievement of

economy of scale. For example, a calculation revealed that, for one

vendor, going from a medium to a large capacity drive resulted in a

162% increase in capacity for a 76% increase in cost.

Disk space is required for the recording of data during the execution

of test software (4.3.4). The approach taken of recording

information only when out of limits conditions occur (4.3.4.4.3) is a

compromise over what the run data recording requirements could be.

The calculation provided here is an example of what the run storage

requirements would be if recording of data were to be done for each

target machine simulated/emulated cycle.

Assumptions:

6,000 gates

15% gate state changes

l_s target machine cycle time

1,000 samples per run.

Calculations:

900 (15% of 6,000) gate state changes per cycle

900,000,000 gate changes per sample

9000,000,000,000 gate changes per run

With 3 gate changes recorded per

32 bit word, 300,000,000,000 words of disk required.

1,200,000i000,000 bytes of disk required

or if on magnetic tape

With 4,000 charactor tape blocks

300,000,000 blocks at 3 inches of tape each is 900,000,000

inches of tape

9 U_, _uuu,uuu - 28,800 = _,"=^_u 2400 foot reels

4-6

!

4.241.4 I/O Devices

4.2.1.4.1 Tape Drivers

4.2;1.4.1.I Two (2) read/write nine track 1600 CPI phase encoded tape drives

of not less than 75 IPS read/write speed or less than 120,000 bytes per second

peak transfer rate shall be provided.

4.2.1.4.1.2 The tape units shall provide for read-after-write check feature.

4.2.1.4.1.3 The tape units shall handle up to 2400 foot reel size.

4.2.1.4.1.4 The tape units shall be of the vacuum chamber type. Mechanical

feed arms are not permitted.

4.2.1.4.2 Line Printer

_J

t i-:

°E."

, i

-L

"i)?

-'C-

._/ {

-." 2

. J

4.2.1.4.2.1 One (i) impact type printer shall be provided. The printer shall

have no fewer than 132 print positions. The ASCII character set of 95

characters shall be employed. The proposed printer shall be able to line

space at 6 and 8 lines per inch, vertically. The printer must provide

standard horizontal spacing of ten characters to the inch.

4.2.1.4.2.2 The throughput requirement is minimally 600 lines per minute when

printing full 132 characte_ lines consisting of the 95 printable character set.

4.2.1.4.2.3 The system shall be upgradable to a configuration of two (2)

printers meeting these specifications.

4.2.1.4.3 Operator Console

4.2.1.4.3.1 The system operating console shall provide for hard copy output.

The console must be of rugged construction capable of withstanding heavy use,

i.e., continuous use during operating hours. This requirement would not

preclude a printing unit operating as a slave to a CRT operator console.

4.2.1.4.4 Telecommunications Hardware

Telecommunication hardware shall be provided to handle data exchange and its

associated line disciplines between local terminals and the host computing

system. Attached terminals will be used for time sharing, inquiry/response,

local graphics and local plotting. The system shall be able to handle half

and full duplex lines concurrently. Circuit disciplines in general shall

include at the minimum start/stop half duplex and full duplex asynchronous

transmission.

4.2.1.4.4.1 All telecommunications hardware supplied by the vendor shall

conform to the Electronic industries Association Standard RS 449. The

government has adopted RS-449 as Federal Standard 1031, which became mandatory

for all procurements by federal agencies starting June I, 1980. EIA Standards

RS-449, RS-422, and RS-423 are intended to gradually replace RS-232-C.

Telecommunication hardware which conforms to the new standards shall be

provided. The vendor's proposal must state how existing terminals which

conform to RS-232-C will be accomodated.

4-7

q

4.2.1.4.4.2 The telecommunications hardware/software shall support the

Teletype (TTY) start-stop asynchronous communications. The

emulators/simulators are intended for use With various ADP vendors, so the

proposed emulation/ simulation shall not be specifically designed for any

particular vendor.

4.2.1.4.4.3 The initial four (4) con_munications ports (See A. 2.2.5) will be

utilized for some combination of alphanumeric CRT(s), graphic display,'

digitizer board, and electrostatic plotter. The proposed system must be

upgradable to eight (8) communication ports.

I

:i

#

:'}

z,[

;i
2_

 i!.!il

• ,2:_

• :#,a

" _

4.2.1.4.4.4 One (I) interactive user CRT terminal is to be provided by the

vendor. The unit will be locally attached to the CPU operating at the speed

of 1200 BPS or faster. The physical connection will not exceed the industry

standard of fifty feet. This unit will be utilized by the software program

specified under 4.3. The following are minimum specifications to be met:

I) 80 character line width

2) 24 vertical lines

3) Fill-in-the-form capability with the form stored in the background

and variable information entered in the foreground. Once the form

has been loaded to the CRT memory, it will be utilized for a series

of transactions w_thout need for retransmission from the computer.

Only the variable information is to be transmitted to the computeK

during the data entry process.

4) Normal and reverse video

5) Double intensity

6) Blinking

7) Underlining

4.2.1.4.5 General Purpose Computer Emulation Computer Interface

4.2.1.4.5.1 The contractor shall provide any necessary hardware to

interconnect the general purpose computer to the emulation computer.

software is specified under 4.3).

(Related

4.2.1.4.5.2 Data transfers between the two computers will consist of the

following:

4.2.1.4.5.2.1 For reliability analyses data gathering, _he transfers will
include:

4-8

I)

2)

At the start of the run, the general purpose computer will load the

emulation computer control memory with the gate level emulation

algorithm and the emulation computer primary memory with the gate
tables for the specific system portion of interest.

During the run at each fault insertion time, the gate tables within

the emulation computer primary memory will be updated to reflect the

inserted fault by the general purpose computer.

.<

2:

- .?

,..%

:l

4

-_

. .._!

,._ .2.

, -,:..%

• .?

• _!_

3) During the run, for each machine cycle, the inputs to the block being

emulated at the gate level will be transferred from the general

purpose machine to the emulation machine and the outputs of the block

will be transferred back from the emulation machine to the general

purpose machine. The quantity of data transferred depends on the

degree of interconnection between the emulated block and the rest of

the system.

4.2.1.4.5.2.2 For failure effects analysis, the data transfers will be the

same as specified in reliability analysis data gathering. In addition, at the

end of each cycle, the new state of each changed gate may potentially be

transferred from the emulation computer back to the general purpose computer.

4.2.1.4.5.2.3 For standard emulation purposes, data transfers will be as
follows:

l) At the start of the run, the emulation machine control and primary

memory will be loaded with the appropriate software by the general

purpose machine.

2) During the run, input and output data from the environmental

simulation to the emulated machine and back will be transferred at

appropriate times.

3) Additional data concerning the state of items in the emulated machine

may potentially be transferred back to the general purpose machine

for performance evaluation purposes.

4.2.1.4.5.2.4 The speed of the computer-computer interface for data transfer

shall be sufficiently fast so that the predominant amount of time in the

reliability analysis data gathering experiments will be time for

simulation/emulation of the system rather than for data transfer.

4.2.1.5 Interactive Graphics Subsystem

4.2.1.5.1 The contractor shall provide the necessary hardware to capture and

validate gate level •logic diagrams. (Related software is specified under 4.3)

4.2.1.5.2 The graphics workstation is to be made up of the following

component s :

4-9

I) Digitizing Board with cross-hair cursor. The digitizing surface must

be large enough to handle logic diagrams up to standard size E (34" X

44"). The gantry style digitizer is preferred, but is not

mandatory. The logic symbols are not to be digitized in detail. The

symbol type is to be selected from a menu and the symbol position is

to be recorded via the cursor. With this approach, a digitizer board

with minimal accuracy, resolution, and repeatability may be

utilized. A resolution of I00 points per inch is adequate. The

working surface shall have both tilt and height control.

j

i ,i

i iiil
• " i

2) Graphics CRT with alphanumeric keyboard. The minimum screen size

shall be 19". This requirement may be met by a single raster scan

type graphic CRT with the capability of a reference drawing being

flashed onto the screen from which a zoom-in area may be selected.

The requirement may also be met via two storage tube type graphic

CRT's. A reference drawing would be displayed on one CRT while

zoom-in areas are displayed on the second CRT.

3) Electrostatic plotter with a roll paper width of 36". The unit shall

have a resolution of I00 points per inch. The electrostatic plotter

will he used primarily for quick turnaround images for validating

plots against the original input document, i.e., gate level logic

diagrams.

4.2.2 Emulation Computer

4.2.2.1CPU Architecture - The emulation computer shall be user

microprogrammable. The microcode shall provide control over primitive

functions within the machine (e.g. connection of registers to busses, ALU

operations, etc) and shall provide the capability for parallel operations
within a microword.

4.2.2.1.1 Microcode containing the NASA Langley gate-level algorithm or

similar algorithm must be programmed into the emulator. Due to the stringent

speed requirements for processing such an algorithm, the microcode must

perform multiple operations in parallel.

4.2.2.1.2 Each gate being processed is described by a gate information word

of eight or more bits. This word is also the address to which control is

transferred in micro store, thus micro store must be sufficient to handle all

locations addressed.

4.2.2.2 Memory

4.2.2.2.1 Microprogram Memory - Sufficient microprogram memory shall be

provided to accumodate a table-driven gate level emulation algorithm.

Requirements of the algorithm are detailed in paragraph 4.3.4.7. As a

minimum, at least IK words of microprogram memory shall be provided.

4-10

4.2.2.2.2 Primary Memory - Sufficient primary memory shall be provided to

contain the gate level tables required by the emulation algorithm. These

tables shall accomodate at least 5000 gates with an average gate fan-out of

2. As a minimum, at least 32K words of primary memory shall be provided.

4.2.2.3 The selection of the micro code to be executed shall be via a

"vector" type mechanism. That is, some combination of bits in a word

containing gate status shall provide the address of the microinstruction to be

executed. Such a mechanism precludes the necessity of testing individual bits

to determine the action to take for a particular gate.

4.2.2.4 The emulation computer shall also be useful for instruction level

emulation of digital devices. The characteristics of the machine shall be
such that it will accomodate such emulation.

4

!!i:_?'4

" "2.

. ;i_,d

4.2.2.5 The emulation computer shall be interfaced to the general purpose

computer for data transfer and for software level synchronization of

cooperating, parallel simulations and emulations in the two machines. Data

transfers expected are defined in 4.2.1.4.5.

4.2.2.6 The emulation computer shall have the speed and power necessary to

execute the gate level emulation, in the normal operating node, for 6000 gates

for 0.i seconds of emulated time in 5 minutes or less of real time. The cycle

time of the emulated system for this timing figure shall be i microsecond, the

average gate fanout shall be 2; and in any one cycle, 5% of the gates will

change value, on the average.

4.3 Software Configuration

The software consists of five major pieces. These pieces are:

I) General purpose support software

2) Model building software

3) Test generation software

4) Test execution software

5) Analysis software

The software, with exception of some of the test execution software, some of

the general purpose support software, and some of the model building software

shall run on the general purpose machine.

4.3.1 General Purpose Support Software

4.3.1.1 General Purpose Machine Operating System

4-ii

,:#

J

4.3.1.I.I The system shall feature a single, fully implemented operating

system that integrates all the hardware and software that comprise the

system. The operating system shall be generally available in the market

place. More specifically, all features and capabilities shall have been

publicly and formally announced and operational prior to the offer submission
deadline.

4.3.1.1.2 It is anticipated that the primary mode of operation will be a

single operator performing a single task. Examples would be a single graphic

station capturing a logic diagram or a simulation/emulation job running alone

in the system. However, the architecture of the system shall not preclude the

concurrent processing of a simulation/emulation run with the digitization

process. Nor should the architecture preclude the addition of a second

graphic work station in the future to operate concurrently with the original

graphic work station.

7

!

l

i

ii

";/}

, £-s':!

211::.!

iii!
. .,j

.'- - iJ

" 2

" I

Allocation of resources to tasks shall be performed as automatically as

possible. All the software items specified throughout this document shall be

able to operate concurrently with any and all others, except for restrictions

such as momentary unavailability of an equipment resource.

4.3.1.1.3 The operating system shall provide a dynamic environment. That is,

memory management shall be done in such a manner that all concurrent running

jobs in total may require more memory than what is physically available. The

addition of more physical memory would improve the system's performance. This

capability shall be provided without requiring the'programming staff to define

overlays.

4.3.1.1.4 The operating system shall have the ability to produce and retain

in mass storage for later processing, resource utilization data pertinent to

each task performed. The resource data produced shall include most of the

following by user account/charge:

I) Number of lines printed

2) Central processing unit usage

3) Input/output usage

4) Remote terminal connect time or traffic statistics

5) Actual memory used

6) Amount of mass storage used

Simplified measuring units such as the aggregate of the items above, shall be

reversible to the individual component level.

4-12

4.3.1.i.5 The operating system shall operate the following basic job origin

tasks concurrently:

I) Interactive

2) Local batch

4.3.1.1.6 The operating system shall provide for I/O spooling. Spooling of

local print output shall be provided for. Spooling is defined hereas

providing a temporary file that will act as a buffer for spontaneous input or

output of data and thereby reduce impacts to executing programs waiting for

I/O services. Direct, i.e., non-spooled, I/0 shall also be available for

time-critical transmissions.

I

_J

2.1

"%' ._

:-_-_

. . -j

4.3.1.1.7 Terminal users of the system shall be able to communicate with the

system operator via terminals and vice versa via the operator control
console. This is required because terminal users may or may not reside in the

same room as the system.

4.3.1.1.8 Interactive batch job submittal from time-sharing devices shall be

provided. The user shall be permitted to save files on either magnetic tape

or mass storage disk.

4.3.1.1.9 A terminal user shall be able to determine the status of a batch

4.3.1.1.10 The system response time to an interactive user system command

shall not exceed an average of two (2) seconds. The absolute maximum response

time shall not exceed thirty (30) seconds.

4.3.1.1.11 The system must provide for a job control language that allows the

user to override system defaults and parameters pertinent to job management,

job scheduling and data management. This provision shall provide control over

job priorities; job termination options; programmatic steps within a job

stream; job dispatching and execution, etc.

4.3.1.1.12 Security and system authorization. The system must limit access

to any and all installation resources, including files and data contained

therein. This facility will only allow processes to those users that are

pre-defined as authorized for access. Read and write permits must be features

within the data authorization scheme.

4.3.1.1.13 The operating system shall be considered to be state-of-the art.

That is, the operating system shall have been designed, developed and

implemented to support an enviro_ent of concurrent interactive and batch

_0bs. The system being specified in this document is to be utilized in the

evaluation and testing of fault tolerant airborne avionic computers of the

future. When consideration is given to this fact and the fact that the

enviroranent is one of new technological development, it is prudent and

reasonable that only the best available resources and toolsshould be made

available for the project.

4-13

4.3.1.2 User Oriented System Software Components

4.3.1.2.1 A file editor shall be provided with the following minimum

capabilities:

i) With the exception of binary object files and files written by

FORTRAN as unformatted, be able to manipulate any and all files used

by the system.

+

2)

3)

Must be available interactively and optionally be available through

the batch mode.

Must contain, as a minimum, the following, or equivalent capabilities:

i. Replace String

i,

!

::ii
_ ..,+

+-' ,"t
• + ,:

+ .._,

i ? +::i

i

.-;:5

ii
i: !

)•+:

1

,)

• • ++

+ (2"i
• • +

2. Change line

3. Delete

4. Print/List

5. Search (forward and backward)

6. Insert

7. Add

4) Must provide the user with the view that his whole file is

immediately available to him, that is, he must not have to

specifically fill and empty the current edit buffer.

4.3.1.3 General Purpose Programming Languages

4.3.1.3.1 A FORTRAN compiler that minimally meets the ANSI X.3.9-1966

specifications shall be provided. The delivered compiler must be stable and

thoroughly debugged.

4.3.1.3.2 An ASSEMBLER or hardware level compiler shall be provided which

possesses features not available in the high level programming languages

required under 4.3.1.3.1 and 4.3.2.2. Bit and character level manipulation,

privileged instructions, register referencing, and branching based on hardware

conditions shall be provided.

4-14

4.3.2.1 The relationships of the various models shall be as follows:

=, I

!

X

i!i

;!

.:_

"'2_

-_•i4i

4.3.2.1.1 The enviror_ental simulation shall execute in the general purpose

machine and shall simulate the effects of the systems, sensors and activators

which interface to the digital avionics computer(s). This would include such

items as attitude and rate sensors, attitude control activators, etc. This

model shall produce the identical effect as if the avionics computer(s) were

connected to actual devices in a real system.

4.3.2.1.2 Functional level machine simulation shall provide a model of the

behavior of the avionics computer(s). This simulation shall be at the

instruction level of the computer such that actual software may be executed by

the simulation with results identical to the real avionics computer(s). This

model shall interact with the environmental model, reacting to the inputs

provided by that model and producing the appropriate outputs to that model.

This model shall also interact with the gate level emulation(s) which are

active by providing the appropriate inputs and receiving the outputs of the

gate level emulation(s).

4.3.2.1.3 The gate level emulation shall provide a model of the behavior of a

portion of the digital avionics computer(s) at the gate level. It shall

interact with the functional level simulation by receiving inputs from that

simulation and by providing appropriate outputs to the simulation. This model

will correctly propagate inserted faults to its outputs.

4.3.2.1.4 The instruction level machine emulation, is intended to interact

only with an environmental simulation. This model shall provide the

capability to emulate, on the emulation machine, a complement of digital

hardware at the instruction level. This is intended for gathering data

concerning performance and not for failure effects or eeliability evaluation.

4.3.2.2 Model Description Translators

4.3.2.2.1 Environmental Model Translator

4.3.2.2.1.1 A translator shall be provided which will translate an

environmental description into executable simulation code on the general

purpose machine. The translator shall accomodate descriptions of outputs,

inputs, limits, etc., for sensors, activators and items external to the

avionics computer(s). The translator shall accomodate tagging items of

interest for later checking on limits during the simulation execution.

4.3.2.2.1.1 The environmental model execution code shall interface to and

provide input and output for the functional level computer simulator.

•i•

4.3.2.2.2 Functional Model Translator

4.3.2.2.2.1 A translator shall be provided to translate a functional or

instruction level description of one or more digital avionics computers into

executable simulation code on the general purpose machine.

4-17

!

J

4.3.2.2.2.2 The functional model translator shall use a hardware description

language which allows expression of the structure and behavior of digital

systems •

4.3.2.2.2.2.1 The hardware description language shall provide for expression

of timing and synchronization, both between internal elements and between the

system being described and the external enviromnent.

.4

.J

!t

: :.:_,_

._,_;_

: -:J&

.[

j 1

' 5.. i

4.3.2.2.2.2.2 The hardware description language shall provide for description

of the interface between the system being described and the external

environment in terms of inputs and outputs. This description shall provide

the tie to the executable code for the enviror.nental model so the two models

will work together.

4.3.2.2.2.2.3 The hardware description language shall allow the description

of the system in terms of independent functional blocks and the interfaces

between those blocks. The translator shall produce code which allows the

replacement of the code for a functional block with something else which will

provide the same inputs and accept the same outputs without modifying the

model itself. This shall provide the link between the functional simulation

model and the gate level emulation model.

4.3.2.2.3 Gate Level Model Translator

4.3.2.2.3.1 The gate level model translator shall translate system logic

diagrams to the gate level tables needed by the gate level emulation algorithm.

4.3.2.2.3.2 The gate level model translator system shall include all

necessary interactive graphics software to operate on the general purpose

computer for capturing and validating logic diagrams. Standard logic symbols
shall be used for:

I) Inverter

2) AND gate

3) OR gate

4) XOR (exclusive OR) gate

5) NAND (not AND) gate

6) NOR (not OR) gate

7) RS flip-flops

8) T flip-flops

9) D flip-flops

I0) JK flip-flops

Ii) other logic devices.

4-18

. .:_._

:i

,;1,1

The software capability to capture legend and associate the legend with each

gate or device symbol shall be provided. The software shall provide for

multiple logic diagram sheets for a single function to be emulated. That is,

a single logic diagram up to 34" X 44" in size will not always represent an

entire function to be emulated as a complete unit. Yet each separate sheet

must be stored on disk as a subunit for output on the electrostatic plotter

for the validation process. Off diagram linkages to other sheets must be

provided for. A single "E" size drawing 34" X 44" will represent

approximately 1500 gates.

4.3.2.2.3.3 The translator shall translate the logic diagrams captured via

the graphics system to produce the gate level tables required by the gate

level emulation algorithm on the emulation computer. Each functional block,

corresponding to the functional blocks of the functional level simulation

model, shall be in a separate table, identifiable with the corresponding

functional level block.

4.3.2.2.3.4 A language translator shall also be provided which allows

description of gates and their interconnections in a purely textual manner.

The output of this translator shall be identical to and compatible with the

graphics input translator.

4.3.2.2.4 Instruction Level Emulation Translator

4.3.2.2_4.! The _st_ction level emulatlon translator shall provide the same

functions as the functional model translator specified in 4.3.2.2.2 except

that the executable code to which the description is translated shall be code

for the emulation computer rather than the general purpose computer.

4.3.2.2.4.2 The instruction level emulation translator shall use a hardware

description language but there is no requirement for partitioning into

functional blocks. The translator shall provide the interfaces to the

environmental model simulation running in the general purpose computer.

4.3.2.2.4.3 The instruction level emulation translator shall provide a code

generation description output which may be input to a retargetable software

translator such as a compiler or assembler which will translate the software

to drive the described system. The description shall provide instruction

formats, machine code descriptions and any other data necessary.

4.3.2.3 Link Software. Any software necessary to link the various models and

allow them to communicate shall be provided.

4.3.2.4 ModelDebug Packages

4.3.2.4.1 Debug packages shall be provided for each type of model.

4.3.2.4.2 The debug packages shall support interactive control and display of

actual system parameters and modeled system components.

4-19

•!i

i

il ?!

i_ ¸

4.3.2.4.2.1
as a minimum

1)

2)

3)

4)

5)

6)

7)

S)

The debug packages shall support control of each model including

Start

Stop

Single Step

Trace

Breakpoints (minimum of 16)

Item value change trace

Continue after break

Interactive modification of values

4.3.2.4.2.2 The debug package shall support display of both actual and

modeled systems items including as a minimum:

i) memory

2) registers

3) emulated gates

4) external inputs and outputs (environmental simulation)

5) processor state

6) time

4.3.2.4.2.2.1 The items to be displayed shall be specifiable by the operator

including display device and format.

4.3.2.4.2.2.2 Items shall be capable of being tagged for display in response

to system events such as:

I) breakpoint

2) interrupt

3) user command

4) trace

5) single step

k

;fl

• _ i•i•_

4.3.3 Test Generation Software

Software for developing test scenarios and fault insertion shall be provided.

4.3.3.1 Test Scenario Software

4.3.3.1.1 The test scenario software shall include the capability to specify

a sequence of runs, perhaps with differing parameters, which will subsequently

be run automatically by the system.

4.3.3.1.2 The test scenario software shall include the capability to specify

initial values of all external inputs, simulated devices and internal state,

including time, of the test system. This shall include the capability to load

a configured system which has been previously stored on a storage device.

4.3.3.1.3 The test scenario software shall include the capability to specify

specific data to be collected, the format of the data and the event in

response to which the data shall be recorded.

4.3.3.2 Fault Insertion Generation

4.3.3.2.1 The fault insertion generation software shall provide the

capability for either automated or manual generation of faults to be inserted

in the gate level emulation.

4.3.3.2.2 The fault insertion generation software shall produce the following

information concerning each fault to be inserted:

I) Gate identifier to receive the fault

2) The simulation/emulation run time at which the fault is to be applied

in terms of sample number and fraction of time within the sample.

3) The duration of the fault

4) The fault state that is to be introduced, i.e., steady zero state,

steady one state, intermittent zero state, or intermittent one state,

or alternating between the zero and onestate.

4.3.3.2.3 The manual fault generation software shall allow the analyst to

specify all of the factors for each fault as given in 4.3.3.2.2.

4.3.3.2.4 The automated fault generation software shall allow the analyst to

specify the following:

I) Number of faults to be generated

2) Specific system portion of interest or probability distribution of

faults across the system

3) Probability distribution of faults over time for each sample

4) Probability disZribution of type and duration of faults.

4-21

/

i

i__

:!

"j

i•

4.3.3.2.4.1 The automated fault generation software shall produce the data

specified in 4.3.3.2.2 through the use of random number generators to provide

the desired distributions.

4.3.3.2.5 The fault generation software shall produce the information

specified in 4.3.3.2.2 in such a way that the simulation execution system will

use it to insert faults at the specified time in the specified sample in the

gate level emulation.

4.3.3.3 Test Driver Software Generation

4.3.3.3.1 The capability shall be provided for translating software for the

target (emulated/simulated) machine on the general purpose computer. The

translated software shal_ be used to drive the test system during the

execution phase.

4.3.3.3.2 It is highly desirable that the translation process be entirely

automated, taking as input the source code and a description of the machine

for which code is to be generated and then producing object code for that

machine. Translators which operate in this mode are often referred to as meta

assemblers or meta compilers.

4.3.3.3.3 It is highly desirable to have a meta compiler delivered to satisfy

this requirement. However, given the current state-of-the-art, a meta

compiler with retargetable code generator is not available. As a minimum a

meta assembler is required.

4.3.3.3.3.1 The meta assembler will have as one input a description of the

instruction formats, operation codes and addressing modes of the machine for
which code is to be generated. This input shall be produced from the hardware

description language specified in 4.3.2.2.2, augmented as necessary for this
particular task.

4.3.3.3.3.2 If a meta compiler is proposed, it shall have the same

requirements as specified for the meta assembler in 4.3.3.3.3.1.

4.3.4 Test Execution Software

Software for executing the given test shall be provided. This software shall

provide for the control of all the simulation and emulation models during a
test.

4.3.4.1 The execution software shall provide for coordination of timing

between the various models so that they are all synchronized in relation to
simulated time.

4.3.4.2 The execution software shall also coordinate the execution of the

simulations and emulations in the following manner for tests in which fault
insertion is used.

4-22

• 5

4.3.4.2.1 The execution software shall execute the functional level model and

the enviro_ental model until the time at which a fault is to be inserted.

4.3.4.2.2 When the fault is to be inserted, the execution software shall

cause the execution of the functional block in which the fault is inserted to

switch from the functional level simulation to the gate level emulation with

the inserted fault. The balance of the simulated system, without the'faults,
will continue at the functional level.

4.3.4.3 The execution software shall provide for the data recording specified

under the test scenario software in reaction to the events specified.

4.3.4.4 For data reliability analysis collection, the following data

collection shall be provided.

4.3.4.4.1 At the start of a sample, sample number, initial conditions

(external inputs and outputs and internal system state) and all other

pertinent information shall be recorded.

4.3.4.4.2 At the time of insertion of a fault, the sample number, system

inputs and outputs and internal system state, and all the information

concerning the fault shall be recorded.

4.3.4.4.3 At any time during the run, whenever any of the inputs or outputs

exceed the limits specified under the test scenario software, the sample

number, simulated time, inputs, outputs, internal system state, and value out

of limits shall be recorded.

4.3.4.4.4 As the test execution software may very well run for hours or even

d_ys, it is absolutely mandatory that automatic check-point restart capability

be provided.

4.3.4.5 The execution software shall operate without user intervention but

shall allow the user to stop the execution and save the system state for later
reload.

4.3.4.6 The execution software shall provide support for all of the model

debug packages specified in 4.3.2.4. It shall allow execution of the total

system in debug mode.

4.3.4.7 The execution software shall include the gate level emulation

algorithm.

4.3.4.7.1 The gate level emulat$on algorithm shall be table driven, using the

gate tables produced by the translator specified in paragraph 4.3.2.2.3.

4.3.4.7.2 The gate level emulation algorithm shall be able to emulate at

least a 6000 gate system.

4.3.4.7.2.1 The maximum slow down factor for the algorithm operating on a

6000 gate system, assuming an average gate fan out of 2, 5% of gates changing

value in any one emulated machine cycle, shall be 3000 times slower than real

4-23

time. This timing should be based on a 1 microsecond emulated machine cycle

time.

4.3.4.7.2.1.1 This requirement is based on the results of the feasibility

study (Attachment I).

4.3.5 Analysis Software

i

•!

Software to support the reduction of the data gathered during test execution

shall be provided. This software shall provide for data reduction,

statistical analyses and reliability modeling.

4.3.5.1 The data reduction software shall allow the analyst to group common

data and reduce it to necessary components, using the data recorded during the

test execution phase. It shall allow the extraction of items deemed important

for a particular use on an individual basis by the analyst.

L_

)

;ii

'I

zi!

".; .;i

L -?

.- ,. _

•" .? ;Jc"

?i_-;?;:I

:if

' _°'I
i.;.,Z::

[- "'L_

• .;,Z

4.3.5.2 The statistical analysis software shall provide the capability to

calculate statistical parameters from the reduced data produced above. The

following capabilities shall be provided at a minimum:

i) Matrix manipulation

Real Matrices

Complete Matrices

Eigen values, Eigen vectors

2) Ordinary differential equations

3) Regression analysis

4) Time series analysis

5) Variance analysis

6) Interpolation

7) Numerical integration

8) Differentiations

9) Polynomial manipulations

4.3.5.3 The reliability modeling software shall provide the capability to

develop parameterized, unified reliability models of the system of interest.

4.3.5.3.1 The reliability model shall be capable of using the statistical

data produced from actual test execution as an input in place of predicted or

expected paramters.

4-24

:!

4.3.5.3.2 The reliability model software shall

for fault tolerant, multiple processor systems.

supRport development of models

"3

"'7

7_ ..°._

• _.-_

i

,':_)

"'i

4-25

i

"'i

J

j

w- I

APPENDIX A

Hardware Composition Trade Study

_o

II.

III.

IV.

Table of Contents

Introduction

Methodology

Evaluation
Final Recon=nendation

A-I
A-I

A-2
A-2

4

i

.!

bl

4 :;

_*. _

._2?,

6.i;!

.; • :.-)

-" " :t2 4q

A-ii

•:1!

-4
-j

I. Introduction

This trade study was done to determine the best approach to the hosting of

the various pieces of software needed by the digitial avionics design and

reliability analyzer. The trade study was designed to answer the question:

"should the facility be based on an emulator-only system or emulator/support

machine system?". The emulator/support system envisions an emulation machine

connected to general purpose computer. The general purpose computer supports

most of the software, with the emulator supporting only actual emulations. In

the emulator-only system, the emulator must support everything.

II. Methodology

To perform the trade study the following 5 criteria were established:

:i

.• .:.!

.4

" " i

\

• '>'i

i) Operation speed

2) User interface

3) Difficulty of use

4) Costof implementation

5) Size of facility needed

These criteria were then rank ordered in order of importance (as shown in

the list above) and assigned weights of 5 to I with 5 being the most important

(operation speed).

Each alternative was then evaluated for its satisfaction of each criteria

on a scale of i to i0 with I0 being most satisfactory and 1 the least. We

then multiplied the satisfaction by the criterion weighting to obtain the

weighted ranking. Weighted rankings for each criterion were then added to

give a total for each alternative, with the higher score reflecting the "best"

choice. The results are shown in Table A-I.

Emulator Only

Emulator/Support

Table A-1 Hardware Composition Trade Study
A

v

0
.m

A

_ _ 0 0

. u _ 0 N

m

0
I--

4/
/ 16

3/
/6

A-1

J ?i

J

I

III • Evaluation

l) Operation Speed - The feasibility study indicated that the primary

limiting factor for the avionics design and reliability analyzer in

the gate level emulation mode is the speed of the gate level

emulation. In the emulator/support case, the support computer

removes the burden for support of environmental simulation etc., from

the emulator. Thus this combination rates 6. A more parallel system

could get a higher score. The emulator only system rates a 3.

2) User Interface - The user interface is one of the key items in the

use of the facility. If this interface is poor, there will be a

reluctance to use the system. General purpose support machines have

the user interface as one of their most visible portions and hence,

modern operating systems have attempted to provide for a flexible

interface. Emulators, on the other hand have a much narrower

applicability and hence less attention is paid to such "mundane"
factors.

3)

4)

Difficulty of Use - This relates not only to the user interface, but

also to the operating system backing it up. The emulator/support

combination can use the general purpose operating system to hide the

tedious details of interaction with the emulation machine which is

attached to it. In the emulator-only case, the user usually has to

explicitly deal with the details of the emulation machine.

Cost of Implementation - The emulator/support system represents an

increase in hardware cost over the emulator-only system. Comparable

software needs to be developed in both cases, with the exception of

the additional driver software necessitated by the emulator/support

interface.

5) Size of Facility Needed - There is no clear indicator that either

choice represents a better possibility here.

IV. Final Recommendation

Based on the established criteria, the emulator/support system is

recommended.

A-2

:..._-c,¸

!

•_iI
• /!

•i,i_!]

,.. °.

APPENDIX B

Microprogrammable Computer Trade Study

g

it'"

_o
II.

III.

IV.

V.

VI.

Table of Contents

Introduction

Microprogra_mable Computer Architecture

Requirements

Computer Search

Computer Performance Analysis

Conc lus ion

B-I

B-I

B-2

B-3

B-6

B-15

B-ii

List of Tables

Table Page

"',4

? _;:t

1

;"2_

.: _ . _!

B-iii

I • Introduction

The following trade study was done to determine which micropr6gran_nable

computers would best serve as the emulator portion of the digital avionics

design and reliability analyzer. First a search was done to find all

available user-microprogrammable machines. These were then analyzed to

•determine which ones met the requirements for implementing the NASA Langley

gate-level emulation algorithm. The machines which met the requirements were

then compared concerning performance and price. A select few were recommended

as candidates for the emulator portion of the digital avionics design and

reliability analyzer.

•t

I

.!

.,

7"

_q

}i!;

. LO.ii

2;

• ,.?|

II. Microprogrammable Computer Architecture

A microprogrammable computer is one whose microcode can be changed by the

user. Microcode, which is stored in control store, consists of

microinstructions which control the primitive operations of the computer. A

complex operation performed by a computer can be represented as a sequence of

ti _yp - -:---'-_ _"" _ "_microopera ons. There are _hree es uf m_u_u_o__,,o. ,=_,,

allowing one operation per instruction; diagonal, allowing one or more; and

horizontal, allowing many operations per instruction, thus increasing

processing speed.

B-I

•.!IL
i i _

I

4

u!

i!

I

•:Ui

o

Ill. Requirements

There are a number of requirements that must be met by a user-

microprogrammable computer in order to implement the NASA Langley gate-level

algorithm. These requirements are based on a feasibility study implementation

of the algorithm using the Nanodata QM/I computer.

I. The microcode controlling the machine shall be user-progranm_able

through software.

2. The microcode shall provide for parallel operations within a single

microword.

3. Control shall be directed from main store via a gate info word of at

least 8 bits to micro store using a vector mechanism. The gate info

word contains the address of the location in micro store to which

control is directed.

4. Control store shall contain at least one thousand words.

5. Main memory shall be sufficient to handle the algorithm, at least 32

thousand words.

B-2

IV. Computer Search
Various references were investigated in order to find namesof all

companies manufacturing minicomputers which are microprogrammed. The

following sources were used: AuerbachPublishers, Inc., Data Pro Information
Services, Electronic Buyers' Guide 1980, NASARecon Data Base (remote

console), Defense Technical Information Center, and the Lockheed DIALOGdata
base. This search resulted in the list of companies shownin Table B-I. Each

companywas then contacted and asked which, if any, of their minicomputers
were user microprogrammable and could function as emulators. The list of

computers shownin Table B-2 resulted from these inquiries.

4

!

.i

/ .|

i¸,:i_

, ._2" tl

• • j

_ - _(£

B-3

z__

;! Table B-1. Computer Manufacturers Surveyed

MANUFACTURER COMMENT

Ji

!

-2 -'_

_i

,t

i) Burroughs

2) Cado Systems

3) Control Data Corp.

4) Data General

5) Digital Equipment Corp.

6) Digital Scientific

7) Hewlett Packard

8) Honeywell

9) Nanodata Corp.

i0) Northrop Data Sys.

ii) Microdata

12) Ohio Scientific

13) Perkin-Elmer

14) Prime Computer Inc.

15) Rolm

16) Sperry Univac

17) Systems Engineering Lab

See Table B-2

Word length limited to 8 bits

See Table B-2

See Table B-2

See Table B-2

See Table B-2

See Table B-2

See Table B-2

See Table B-2

Nothing user microprogrammable

Nothing user microprogrammable

Nothing user microprogrammable

See Table B-2

Only limited information available

Machine too small; C.S. too small

See Table B-2

See Table B-2

!

, 3

B-4

?

'1

z_
.!

_i'iI

rr,

_E

B-5

V. Computer Performance Analyses

Each computer was then examined to determine whether or not it would meet

the requirements determined by the study done on the QM/I using the NASA

Langley Research Center gate-level emulation algorithm. All machines met both

the 32K main store requirement as well as the IK control store requirement.

The following analyses discuss the operation of each machine in relation to

Requirements I, 2, and 3.

!

L_

3

;4_

, :?t._: 1

- 1

}

i:

• q

% _,i

1.0 Burroughs BISO0 or BIg00 Series

In this computer cache _emory (2K words) is used as control store; it is

possible to store all of the microcode in the cache memory. A pipelined

processor permits fetching, decoding, and executing microinstructions to be

performed separately and concurrently thus compensating for the limited

capability of the 16-bit microcode. Memory addressing at the hardware and

microcode level is accomplished through a 24-bit field address register that

can directly address 16,777,215 bits as though they were a continuous string.

Up to 24 bits can be processed in one operation taking 167 ns. Optional port

interchange enables independent rather than processor-dependent access to main

store by such devices as the multi-line data communications control. The

18-bit A register contains the absolute "S" or Main Memory address of the

microinstruction to be executed.

This machine would be a suitable candidate.

2.0 Control Data Cyber 18

The CDC Cyber 18 was designed to emulate the CDC 1700 Series. The

microprocessor contains 2K to 4K of 32-bit user programmable microcode. One

typ__ of micro memory consists of 512 words of read/write memory and/or IK

words of read only memory; the other type contains 2K of read/write memory.

Each 32-bit microinstruction is divided into five main sections each

performing a different operation in parallel with the others. The

microprocessor controls the machine at all times. The process of decoding a

macroword in main store determines the address of the micro routine which is

called.

B-6

q

i

:il

-•]

.i

.!. _

!

2, _ ,i

. i
s -.i

The read/write random access memory (RAM-) can either be loaded from an

external device or data can be written into micro memory under control of the

micro program.

Since this machine does have sufficient control store of parallel

microcode and uses a vector mechanism to transfer control from main store to

micro store it would be a candidate.

3.0 Data General Eclipse

The control store of the Data General Eclipse contains 2K 56-bit words of

parallel microcode. Each microinstruction is divided into 15 micro fields

which can be grouped according to the purpose they serve. A word in control

store is addressed by the 12-bit output of the state change logic which is

determined by the contents of the True Address bus or the False address

field. In order to start main memory the CPU places an address on the logical

address (LA) bus and issues a start signal to memory. Only the module

containing the memory location addressed responds to the signal.

microprograms in symbolic form and assemble them to produce a binary object

file. The microloader is then used to load the object files.

This machine contains the vector mechanism to address the microcode and

has flexible, parallel microcode so it would be a candidate.

B-7

• 13

!

] •

/ i

i

4.0 DEC - VAX 11/750

The VAX 11/750 contains 6K of 80-bit microcode. A _single microinstruction

can perform many operations in parallel. The VAX 11/750 was designed as an

emulator for the VAX architecture and contains IK of user control store.

Emulation starts with one micro-_rder called the BUT/IRDI. This signals the

beginning of the next VAX machine instruction. In r the micro-code which

emulates each VAX instruction, this micro-order is present in the last

microinstruction. Access to the user control store is by the opcode called

"FC" in the VAX instruction stream. This opcode results in a branch to a

location in user control store. From this point on, user microcode has

control of the micromachine. Control can then be returned to the VAX

emulation by means of the BUT/IRDI micro-order.

There are a number of features which support user microprogrammin_°_ the

data path which includes 18 general purpose 32-bit scratch pad registers, 8 of

which have ports to both the RBUS and the MBUS; the super rotator, which

allows very efficient (in hardware) bit picking operations; and a flexible

ALU. The microsequencer supports general microprogramming in three important

ways; conditional branching, loop control, and subroutine control. The VAX

11/750 has six independent flag bits, four of which are always available for

user microprogramming and two of which are conditionally available. There is

a 5-bit step counter which can be initialized to any arbitrary value

(0 _- X _- 30). For subroutine control, a 16-deep microstack is available for

nested subroutine calls.

This computer does have the required horizontal microcode as well as an

opcode resulting in a branch to user control store so would be a good

candidate.

5.0 DEC - VAX 11/780

The VAX 11/780 contains IK of 96-bit user control store which is available

primarily for augmenting the speed and power of the basic machine. It is,

however, possible to access 4K of ROM containing the operation and sequencing

of the central processing unit. The architecture and operation of the VAX

11/780 is similar to the VAX 11/750 as far as the requirements of this

contract are concerned.

This machine would be a good candidate.

B-8

+,+

i!

6.0 Digital scientific META 4

This mmchine is designed to be an adjunct processor to a main CPU. One

possible application is as an I/0 processor. The microcode instruction set is

very structured, 32 bits long. Typical predefined instructions include load

from control store, move register to register, etc. Control store size is

limited. Microcode can also read from "main store" via a request, wait

protocol.

Microcode operation is not started via a vectored operation and in

general, this "microprogrammable" machine is typical of a mini computer

without microprogrammab ility.

This computer will not provide the capabilities necessary for our

purposes. Microcode execution is not started via an opcode type operation,

necessitating bit decoding in the implementation of the algorithm. The

machine does not have ready access to the larger main store which would be

necessa=y to hold gate tables in the algorithm. Finally, the instruction set

looks like a mini computer instruction se _ and is not flexible enough to do

_t-.^ 1..-" _ _..1 _,_ _,i_ ,.T_ I_
I.. LL_I_ I,_ .,t. _ Ulna, LL _ LJ I.L ,_,g, L..I. V LL _,.. LL'..- ',.. _ •

7.0 Hewlett Packard i000 E/F Series

The HP I000 E/F Series has 50K of user addressable 24-bit microcode in

control store with access to 12 scratch pad registers. There are four word

types of microcode with up to five micro-orders each. Each micro-order

defines one or more operations to be performed by the computer.

The control processor, part of the CPU, is always in control of the

computer, and the base set microroutines cause the read operations to occur

for all instructions and data from main memory. All 16-bit instructions are

placed in the Instruction Register (IR) and decoded. The process of decoding

the IR bits determines which control memory address (which microprogram) is

called by the instruction received from main memory. Control memory module

selection is determined by the value of bits 8 through 4 in the Instruction

Register. These bits help determine the address of branches in the control

memory base set Primary Mapping Table, which in turn directs a branch to the

desired module.

B-9

j'.

'i

There is a micro programming support software package consisting of the

following:

• RTE Microassembler Program

• RTE Microassembler Cross-Reference Generator Program

• RTE Microdebug Editor Program

• RTE Microdebug Editor Subroutine

. RTE Driver DVR36

• WCS I/O Utility Routine WLOAD

• PROM Tape Generator Program

i

.P,

L.j.

N
.i_

• ,_

•)'-_

-_2:jl

" . !\

:!:,i?ii'
7.-,_"'f

The microcode may be loaded into writable control store (WCS) modules or

may be permanently fused in programmable read-only memory (PROM) chips.

This machine contains horizontal microcode as well as the necessary vector

mechanism so would be a good candidate.

_.0 Honeywell Level 6

The Honeywell Level 6 contains up to 2K 64-bit words in its writable

control store• Eac_ 64-bit word is divided into four 16-bit segments each of

which can be loaded with a separate instruction. Thus, one word may perform

four parallel operations• Control is transferred from the CPU to the writable

control store by causing the CPU to issue a megabus cycle (I/O write)

addressed to the WCS. This operation is performed by the native firmware

whenever the first word of an instruction lies in the range 0080 hexadecimal

through OOBF hexadecimal (64 bits)• The location to which control is

transferred is one of the first 16 locations in the WCS; the specific location

is identified by the least significant hexadecimal digit of the instruction

word.

There is a WCS assembler available to assemble firmware routines as well

as a loader to load the assembled routines into the WCS. A microcode analyzer

is available to selectively display pertinent CPU and W_S information for

debugging microprograms.

Due to the horizontal microcode and the vectoring effect transferring

control from the CPU to the microcode, this machine would be a candidate.

B-10

"4

i_•_,_
_ _i!_

9.0 Nanodata QM/I

The Nanodata QM/I is unique in that it is specifically designed to emulate

other computers. There are two levels of microprogramming with the lower

level called nanoprogra_ming. The top level microprogram is an 18-bit

vertical microcode having many of the characteristics of an assembly

language. The lowest level microcode is a 360-bit horizontal word (144 bits

of which are active at any one time) which interprets the higher level

microcode. The identification of the nanoword which interprets a given

microinstruction is determined by 7 bits in the 18-bit microword itself and a

3 bit page indicator in a CPU store register, giving a total of I0 bits of

address to cover the 1024 words of nanostore.

The control store limit is 40K words. For the Langley algorithm, the

algorithm would be coded in nanocode, using control store to provide the

vector into the proper nanoword and to hold the gate state information. Based

on its architecture and the actual implementation of the Langley algorithm for

the QM/I under the feasibility study, the QM/I is a suitable candidate.

I0.0 Perkin Elmer 3320

The Perkin Elmer 3320 contains 2K 32-bit words of writable control store.

WCS is addressable through ROM location counter (RLC). There are four

assembly level instructions which enable the user to write into WCS, read from

WCS, and transfer control to WCS resident microcode. Unfortunately the 2K

words of the WCS serve as a supplement to the fixed control store; the user

cannot delete or modify user level instructions or machine features located in

the ROM control store. If an operation does not exist in ROM, it cannot be

used in WCS. A new emulator cannot be created in WCS; the user can only add

to the existing one. For this reason, this machine would not be a suitable

candidate.

II.0 Sperry Univac V77-800

The Sperry Univac contains 2K of 48 bit microcode in writable control

store (WCS) with space for IK 48-bit ROM storage. Each microword executes

multiple operations. The WCS acts as an extension of the processor control

store.

B-II

_ i̧ !

7

The WCS contains a decoder control store, a central control store (CCS),

and an I/O control store. The decoder control store consists of two 16-word

by 16-bit memory arrays with associated logic that decodes main memory .

instructions into a 9-bit address which is applied to the CCS. Addressing for

the 64-bit microinstruction is provided by the 9-bit address from either the

processor, decoder control store, or subroutine stack.

The microcode is input as a series of source statements via a terminal or

card reader using the operating system VORTEX II or SUMMIT. The

Microassembler, MIDAS, is then used to transform these statements to object

code. The object code is then loaded into WCS using the microutility, MIUTIL.

This machine does contain horizontal microcode as well as the necessary

vector mechanism to control store and would be a viable candidate.

The architecture of the V77-600 is the same except that there are 4K 64

bits of _S. Thus this machine would also be a candidate.

12_0 Systems Engineering Laboratories 32/70 Series

The SEL 32 Series contains _K 64 bit high speed Random Access Memory (RAM)

as a physical extension of Control Store (CROM). The microinstructions

contained in WCS allow parallel operations within the execution timing of a

single instruction.

The writable control store (WCS) may be used as a CROM extension in the

host computer, or it may be used with the Development Support System (DSS),

residing in the DSS Test Stand. The CROM takes an instruction from Main

Memory and stores it in a 32-bit internal register (Ii). An appropriate

microprogram is executed and the contents of register II are moved to register

IO (a 32-bit register). The CROM entry point is determined by a decode of the

contents of register IO. The CROM contains a series of read only memories

(ROMs) which contain the decode and vector tables within CROM to the

microprogram_ed routines that operat_ the computer.

Entry into the WCS from software is accomplished using the JUMP WCS

Macro-Assembler instruction. This instruction allows the user to jump to any

of the first 64 locations in WCS where vector addresses (in microcode) are

stored, which address routines within the WCS.

The writing of WCS is accomplished using the WRITE WCS Macro-Instruction.

The reading of WCS is accomplished using the READ WCS Macro-Instruction.

B-12

"4

i

r

ii

_i'j

Since this machine does have horizontal microcode and does have the vector

mechanism from main memory to control store it would be a suitable candidate.

In addition to the analyses that were done to determine whether each

computer met the requirements, an algorithm was used to rank the computers

with respect to those characteristics necessary to the solution of the

gate-level algorithm I. The following equation was examined then altered to

better fit the algorithm requirements:

p_

1012 [(L-7) (T) (WF)] i

[32,000 (36-7)] i

c - tl/

where

p=

L=

T=

WF=

tC =

operations

ti/o =
i= .5

the computing power in bits per second

the word length in bits

the total number of words in memory

I for fixed word length memory

2 for variable word length memory

the time in microseconds for the CPU to perform one million

the time the CPU sits idle waiting for I/O to take place

• .._ _4

.j

.J :J

. • '. i _

I Knight, Kenneth E.: Changes in Computer Performance, Datamation, vol. 12,

no. 9, pp. 40-54, September 1966.

B-13

The above equation was altered to include only those parameters relevant to

the implementation of the NASALRCgate-level emulation:

1210 [(L-7) (i) (i)_ I/2

532,000) (36-7)] i/2

[2 (CS) + (m)_

4
!

4
:4

4

• , i

:.j .' ?

'-...? "

{ -, ,

.-_jc,

whe re

CS=

M =

p=

control store cycle time in microseconds

main memory cycle time in microseconds

measure of the bits processed based on a weighted average cycle time

A weighted average of the control store cycle time and the memory cycle time

was chosen as the control store is accessed more frequently than the main

memory so its access time should carry more weight in analyses of the overall

performance.

The measurement P' is not meant to be a direct measurement of the power of

each machine but more of a relative measurement of performance to aid in

choosing the computer which best fills the requirements of this contract.

The value for P' for each computer was then scaled to fall between I and

i00 in order to more easily rank the performances. These numbers appear in

Table A-2 under the heading "Performance Rating". The value for the

performance rating was then divided by the cost of the CPU with minimum memory

(at least 32K words) plus control store to give a value for performance per

dollar. These values were then scaled to fall between i and i00 to give each

candidate a "Performance per Cost Rating".

The prices quoted in Table B-2 represent only the price of the CPU with a

minimum of memory plus the control store. They do not reflect the price of

interfaces, consoles, printers, etc. They should be used only as a general

basis for cost comparison.

B-k4

.;O

I

/ i-7

- .,,,-I

._ .?:':_t_

Vl. Conclusion

The machines which have been recommended as final candidates were chosen

more on a basis of performance than cost due to the stringent requirements for

supporting the gate-level algorithm.

The performance of the QM/I is far superior to any of the other machines

studied. There are a number of machines that compete for second place such as

the DEC VAX 11/750, DEC VAX 11/780, Honeywell Level 6 Model _3, Systems

Engineering Lab 32 Series, Data General Eclrose, Sperry Univac V77-600_ and

Sper=y Univac V77-800. Comparing the two VAX machines, one would eliminate

the VAX 11/780 on basis of cost. The Univac V77-800 could be eliminated for

the same reason. Any of the following machines would be good second choices:

i) DEC VAX 11/750

2) Honeywell Level 6 Model 43

3) SEL 32 Series

4) Univac V77-600

5) Data General

The QM/I far outperforms those machines in second place and would be the

recommended choice for the emulator portion of the Digital Avonics Design and

Reliability Analyzer.

B-15

Attachment i

Interim Technical Report

=i

i
,j

4

,4

" ,2

, . ..g_

.: _ ;:_

,
._ •.5

:_t"}
"• •-5

•72

% <7, !_

Table of Contents

I. INTRODUCTION 1

II. SUMMARY 3

III. BASIC ALGORITHM DESCRIPTION WITH PRELIMINARY TIMING ESTIMATE 5

IV. ADDITIONAL FEATURES OF THE ALGORITHM 24

•:_,?

2 ::_,:

V. IMPLEMENTATION OF THE ALGORITHM 29

_rX _TMTN_ _V_IIT.T_ 37

VII. CONCLUSIONS 49

Vlll. REFERENCES 51

UNIFORMITY OF GATE TREATMENT

DERIVATION OF EQUATIONS

NANOCODE FOR BEST CASE TIMING ESTIMATE

Appendix A.

Appendix B.

Appendix C.

A-I thru A-6

B-I thru B-If

C-I thru C-7

I. INTRODUCTION

This interim technical report details the results of Martin

Marietta's implementation on the Nanodata 0#I/I of an algorithm for the

emulation of digital devices at the gate level. The implementation is

intended to prove the feasibility of using emulation technology for

data collection in support of reliability studies of fault tolerant

digital avionics equipment. From the high level point of view, it

j

3

• w

....:'!3

is clear that that feasibility depends primarily on the adequacy of the

speed improvements emulation seems to offer over simulation. That is

to say, the most useful measure of the feasibility is the time required

to perform a "sufficient" number of experimental runs to give statistical

significance to the results obtained.

The specific algorlthmwhlch we implemented was developed by the

NASA Langley Research Center. The algorithm has two significant factors

inherent in its use. First, It doesn'trequire examination of every gate

in the system and second, It allows treatment of every gate in the same

manner, regardless of gate type. The algorithm is described in detail

in sections III, IV, V and Appendix A.

To provide a basis for the actual timing figures, Section III

provides a discussion of the basic operations involved in the algorithm

and the basic timing considerations in the QM/I to try to determine a

"best case" slow-down factor for the algorithm (i.e., an indication of

the best we can do in terms of speed). This section contains a brief,

high level overview of the philosophy of the algorithm and provides

an introduction to the more complex discussion in Section IV.

Section V gives details of our implementation including considerations

r_

i_?̧_k_

of memory requirements and system size. The timing results are detailed

in Section VI and include graphs to determine predicted performance

for systems of varying sizes. Section VII presents our conclusions

based on the implementation and timing studies. Appendix A contains

the rationale and basis for uniformity of gate treatment, Appendix B

contains the derivation of the timing equations used for projection,

and Appendix C contains the nanocode for the "best case" timing

analysis.

2

!

i

II. SUMMARY

This report details the results and conclusions of Martin Marietta's

implementation of the NASA Langley Research Center's gate level emulation

algorithm on the Nanodata QM/I computer. The implementation was done

to determine the applicability of emulation technology to reliability

analysis of digital avionics systems. This determination has focused

primarily on the speed aspects of the emulation and the time necessary

3

;2d

;,{i

"_FLiN

- 4_.7_':']

to run a sufficient number of sample cases to provide significant results.

The slow-down factor of the emulation is based on four primary

considerations:

.

2.

.

4.

The average percentage of gates changing value in a

machine cycle;

The average fan-out of the gates in the system4

The machine cycle time of the system under study.

Using a system size of 2000 gates, and assuming 5% of the gates change

value, with an average gate fan-out of 2.0, and a machine cycle time

of _s, the actual slow down factor based on the implementation was

found to be 1200:1• This is compared to a best possible slow-down

of 600:1. The 1200:1 figure means that i0,000 samples of 0.i seconds

real time per sample would take 17.2 days of emulation processing,

a span which is entirely reasonable in relative to the kinds of numbers

seenin previous studies (i.e.[3]).

The largest control-store resident system possible under the same

constraints (6000 gates) also exhibits a reasonable slow-down factor

" •7

.#

,!

of 3500:1. However, in attempting to extend the emulation capability

beyond 6000 gates, we found that the processing time is overshadowed

by the time it takes to load data into control-store, and hence this

mode of operation is not feasible.

' ::_÷;

_:J:l?SJ

::': }: a

j2;;i
,/;_ (

;." ":

The basic conclusion of the report is that gate level emulations

of systems up to 6000 gates is feasible within the constraints imposed

by the architecture of the QM/I.

III. BASIC ALGORITHM DESCRIPTION WITH PRELIMINARY TIMING ESTImaTE

In our discussions with NASA Langley Research Center Personnel,

we have been given several estimates of slow-down factor expected by

them in the QM/I implementation of their algorithm. These have ranged

from a low of 300:1 to a higher range of 500-600:1. From our imple-

mentation of the algorithm, these figures seemed very optimistic. The

following discussion is an attempt to define a possible, reasonable lower

bound on the slow-down factor, taking into account QM/I and nanocode

realities as well as the operations necessary because of the algorithm.

For the analysis which follows, we assume that the reader is

familiar with the basics of the QM/I and its nanocode. We further

assume that the reader is familiar with the algorithm implemented

(described briefly below). Please note that in these assumptions we

do not require a working knowledge of either item, only a familiarity

to the extent that allows an understanding of the terms involved. For

example, most of our discussion will be based on the basic time cycle

in the QH/I, the T period (80 ns). It is sufficient for the

reader to realize what a T-period is and what it means in relation to

execution of a nanoword.

The NASA LRC algOrithm is conceptually straightforward. There is

one item requiring acceptance on the reader's part. The algorithm as

defined allows all gates of any type (AND, OR, NAND, NOR, XOR, etc.) to

be treated identically after initialization of the value of the gate

and a quantity called CNT (count) which relates to the number of inputs.

The algorithm has a major and a_inor loop as shown in Figure III-i.

,,;"

i•-_ _--_

• 4

<J

• ,2. _-_

I
b-lniUalize __
_._e For
NextCycle

T
ReadNextX-GateVector I

t"
! IOutput Gate (Z) .

For This X

DoesZ GateValueChange_NoAsA ResultOf NewXValue?/

"-QueueThisZ Gate
_X_r_
l_'_x_ssln_InA Future
"_c_.

_,

Figure II1-1 ALGORITHMOVERVIEW

.T
;- OutputForThisX ?

k_

7
L_

r ,_.

The driver on the major loop is a queue consisting of those gates whose

value has changed. The minor loop is comprised of examining each gate

which is connected to the outputof the changed gate to see if the

change affects the value of the output gate. For example, we will use

the 3 gates shown in Figure 111-2. Suppose the value of gate A has

changed (the mechanism for this is described later). The algorithm

Figure II I-2

then specifies that gates B and C must be examined to determine if the

change in the value of A will cause a change in the value of either

B or C. This is determined by updating the_NT quantity for the output

gate (B or C) based on the new value of the input (A) and determining

if CNT, by virtue of that update, transitions into or out of zero (see

Appendix A for an explanation of this mechanism). Transition of CNT

for the output gate into or out of zero indicates that the value of the

output gate (B or C) changes value. If the value of the output gate (B

or C) does not change because of the input (A) value change, no further

action is necessary. If the value of the output gate (B or C) does

change, the gate is added to the next cycle's changed-value queue (as a

future x-gate) to allow examination of the effects on its outputs.

For brevity in our discussion, we will term the changed-value

queue and its processing "the x queue" and "x processing". We will

similarly term the output gate processing to be "z processing". The

action of the algorithm then causes a z whose valUe changes to become

an x for the next "cycle" (for its outputs to be examined). In this

case, a "cycle" represents the propagation of the signal through one

logic level; and a "machine cycle" would be completed when the x queue

becomesempty (i.e., when the logic circuit has reacted to changed

inputs and the circuit has settled to quiescent values).

8

]

-i

,..4

J

i;i

i2

i ::,?

i

i,:i!i;;ii

_. f.0

There are several benefits derived from the algorithm. For x

processing, only those gates whose values change need to be examined.

Further, only the outputs of those gates must be known. This contrasts

with the typical "brute force" algorithmwhich requires examination of

each gate and subsequent examination of all of its inputs to determine

its value.

For the analysis below, the only way a gate is put on the x queue

is by virtue of its having been examined during z processing and found

to have changed value. We will term this the non-null case of z proces-

sing. Thus we have the following relationship

x gates processed = # non-null z gates processed (1)

This ignores the mechanism for starting the cycle, so we will cover

that later. The null z process is the other case for z's and repre-

sents basically no operation (i.e., no action necessary since the

gate doesn't change value).

_^_uprovide some quantitative values for our discussion we need to

make some assumptions concerning the system being modeled at the gate

level. For example, we need to fix the size of the system. This is due

to the fact that the slow-down factor is directly proportional to the system

size (actually the proportionality is based on the number of gates whose

i

7.!

values change, but this is related to system size). Gate proces-

sing must proceed sequentially, while the modeled machine cycle

time is fixed. Therefore, we based our analysis on the following

assumptions:

4

rli!

N

J

?,>:ii]

.::>.4

':!:gS;
- __?_

I. The system under consideration contains 2000 gates ;

2. Only 5% of the gates will change value in any machine

cycle (x processing_

3. The average gate fan-out is 2 (there are 2 z's per each x);

4. The basic machine cycle time of the emulated system is O. lff_.

For discussion purposes, any further reference to cycle, cycle time or

the time for the logic circuit in the modeled machine to react com-

pletely to a change in input. This represents th_ real time against which

the algorithm is measured.

A second set of assumptions is necessary for this analysis. This

second set relates to the data structure upon which the algorithm

is built. For this discussion we will assume the following structure

(shown pictorially in Figure 111-3).

,

Each gate is characterized by a gate info word. This word

contains the gate value, CNT and various other information.

The x queue is a linked list with the link word following the

gate info word in memory. The link word contains the address

of the next gate info word in the queue. We will call the

link word "LINK".

i

1

7_/:i

• r • _:

I 4; _

kMress

]I Address Of Next Gate
M Gate Info WoN In Oueul (LINK)

•+3[Gate Info Wool] I LINK

-I]l

I AddressOfOutputUst(CLINK)]

c..,i it ,,,P
•.,I It ,,.,FI
..o[1 II
",'! li -.",PI

OutputUst A_lrus

AddressFor1st Output I N
N+15) I

AddressFor2ndOutput i N+]
(M+6) I

1AddressFor1stOutput N+2

! kklress F_r2.d OMImt] N.,

10

Figure III - 3 Gate Queueing Structure

(N+2)

I
I

Be

e

The address of the first gate info word in the queue is

kept in a local store register designated MLINK.

The output gate addresses are kept in a separate section

Ii

of control store in consecutive order. That is, the

•:|

:i

'r._:#N

)...;";i

S:_!;J

. i°'°•-

e

address of the gate info word for output 2 of gate y follows

immediately the address of the gate info word for output i

of gate y.

The address of the output list for each gate is contained in

a word following the queue link word (LINK). We will call

this word "CLINK."

F_he diagram of Figure 111-3, we see the gate whose info word is

located at address m+9 has two outputs. The first output is the gate

whose info word is located at address m+15 and the second is the gate

whose info word is located at address m+6. This is found by following

the CLINK to address n to address m+15 and then following •address n+l

to address m+6. The x queue in that figure goes from the gate of

address m+18 (due to MLINK) to m+12 (LINK) to•m+9 (LINK) to m (LINK).

The data structure just presented represents, in a somewhat simplified

manner, the data structure used in our actual implementation. The

specifics of the implemented algorithm are covered in more detail

in Section V.

Given these assumptions concerning system •size, the definition

of the algorithm and the structure of the data in QM/I control store,

we can nowbegin to analyze the potential slow-down factors based

on those assumptions. One further assumption which is inherent

in the following analysis isthat the decisions concerning

q

]

:_fl_

,_:_!..i

the actions to be taken in z processing are made in a highly parallel

fashion using the QM/I microlnstructlon execution feature [1:66] and

_ocal store register R31. Using this feature, testing of bits in the

gate info word is done quickly in a highly parallel fashion requiring

a very small amount of time.

For the first cut estimate of slow-down, we will ignore the time

necessary for x processing and concentrate on what is required for z

processing. However, to determine the number of gates examined in

z processing, we must use system assumptions 1 and 2 to determine the

number of x's processed and then multiply that by the 2 from system

assumption 3 to give us the total number of output gates examined

(i.e., 2 outputs per x = total z's). Therefore we have the following:

x gates processed = _ystem siz_ X _ system changin_

= 2000 gates X 5%

= i00 gates (2)

z gates processed = # x gates processed X fan-out of x gates

= i00 gates X 2

= 200 gates (3)

Now using equation (I), we find the number of non-null z cases.

Equation (i) stated

x gates processed = # non-null z gates processed (1)

Therefore, we have

non-null z gates processed = # x gates processed

= I00 gates (4)

12

! i_i

Which means that of the 200 z gates we have, half are the non-null

case and the other half are the null case. Now that we have fixed

the amount of processing to be done, we need to get an estimate of

13

the time necessary to do each case. We will consider the null case

first. The shortest nanoword in the QM/I which does not branch to

itself looks like [1:58]:

'7

2:,_=j

Tn:

Tn+ I:

READ NS (not stretched)

GATE NS (not stretched)

Tn"

or

STRETCH, READ NS, GATE NS

We need to explain our notation in the above two examples. The Tx to the

left indicates the T-step (not T-perlod which is fixed, but T-step which may be

either i or 2 T-perlods long). In the first case, the T-steps are not

stretched which means they are each i T-period long. In the second,

the T-step is stretched indicating it is 2 T-periods long. For those

more familiar with nanocode notation, this can be shown thus:

X . . . READ NS

.X . . GATE NS

S •

_r

READ NS, GATE NS.

The net result is that the null z processing requires, in the best

possible case, 2 T-periods.

For the non-null case, we need to do more in the nanoword than

simply branch out. Let us assume that we can do all necessary processing

in one nanoword. To determine the length of that nanoword let us

examine the length of a set of nanowords. The set of _LTI nanowords,

consisting of 124 words, represent 669 T-periods. This works out to:

14

q

•;4

:¢i2

_; t ,

, ,._j

T-periods/nanoword = 669 T-periods/124 nanowords

= 5.39 T-periods/nanoword (5)

This result fits in well with intuition in which we realize that the

case where none of the T-steps in a nanoword are stretched is relatively

rare, and that in most words observed, at least one and occasionally

2 of the T-steps are stretched. Thus, without considering the exact

operations to be performed, we will use a 5.4 T-periods/nanoword figure

for the non-null z processingnanoword.

Now we have the information necessary to calculate the z processing

and the absolute best case slow down factor. The time required is

given by

null'z processing = # null z gates X 2 T/gate

= 200 X 2T

=_200T;

non-null z processing = # non-null z gates X 5.4 T/gate

= 100 X 5.4T

= 540T;

!J

i

4

_/i __

total z processing = null z processing + non-null z processing

= 200T + 540T

= 740T.

To translate this to understandable terms, we use the 80ns/T-period

conversion to get:

time = 740T X 80ns/T

= 59200ns = 59._

For our given machine cycle time of 0._s (system assumption 4),

the slow-down factor is given by:

slow-down factor = actual time

machine time

= 59.2_

= 592: i

This 600:1 factor is close to the NASA LRC expected slow-down in

their 500-600:1 estimate. What is significant about this figure is

that our judgment about 600:1, which appeared to be an optimistic

figure is proven to be true. This slow-down factor is based solely

on z processing, does not include x processing at all, and in addition,

does not include most of the processing necessary for z's.

Let us look further into the x processing. This processing

must consist minimally of:

i)

2)

Reading in the x gat 9 info word from control store;

Reading in the address of the output list (CLINK) from control

store;

15

.

.... :1
.:!t

• ;i
• [.:j

,¢':_

.}

i

3)

4)

5)

6)

Reading in the address of the first output gate (z);

Reading in the gate info word of the first output gate (z);

Reading in the address of the second output gate (z);

Reading in the gate info word of the second output gate (z).

16

i

5

q

:i

_2

%-¢-;,t

÷.,'7:,:,t

;'-,I

.;-. t:

Steps 3-6 depend on there being 2 outputs per gate. Referring back to

Figure 111-3, and using the gate whose info word is at m+9 as the x

gate, step i reads the info word from address m+9 into a local store

register. Step 2 reads the CLINK word at address m+ll into a local

store register. This register contains the address n. Step 3 reads

the contents of address n into another local store register. This

register now contains the address (m+15) of the first output gate.

Step 4 reads the gate info word for the gate at location m+15 into a

register. Step 5 reads the contents of location n+l (m+6) into a

register. Finally step 6 reads the gate info word for the second output

into a register. Thus the minimal x processing consists of steps 1-6.

Now to estimate the timing on this, assuming best possible case, we

will consider the time necessary to do the 6 reads. We assume address

formation takes no time. Based on the timing constraints for control

store [1:36], if we set up for the control store read in Tn, (assuming

all T-steps are non-stretched and correspond to I T-period) the READ

CS cannot legally occur until Tn+2. In the best case, we can also set

up for a new read of control store in Tn+2, which produces the timing

sequence below:

T 1

T2

T3

T4

set up for read of x gate info word

g

read x gate info word, set up for read of CLINK

!

J;

i

17

T5

T6

T 7

T8

T9

TIO

TII

TI2

TI3

read CLINK, set up for read of first output address

read first output address, set up for read of first z

gate info word

read first z gate info word, set up for read of second

z address

read second z address, set up for read of second z

info word

read second z info word.

slow-down factor:

Thus, the best case for x processing is 13 T-periods per x. Now let us

examine the z processing_ In the non-null case, we used one nanoword

to do the setting of bits, etc., necessary in processing a z. We now

need to add in the time necessary to link the gate into the MLINK,

LINK queue. A measure of this task can be gleaned from the MULTI

instruction ENQ. ENQ is an enqueue instruction designed for creating

linked lists. It takes 27 T-periods [2:60]. We could possibly do better

by using an ST (store) instruction of MLINK into the new gate's LINK

and then an MVR (move register) of the new gate's address into _INK.

This approach requires 7T for the store and 5T for the MVR [2:54-55]

for a total of 12T. We might further assume that custom nanocode could

speed this up by I/3 for a time expenditure of ST. (ST is very close

to the time necessary for this operation in the actual implementation.)

Based on these new numbers, we can calculate a new lower bound on

•• •_q

11.._

x processing time = # x gates processed X 13T/x gate

= i00 gates X 13T/gate

= 1300T;

null z processing time = # null z gates X 2T/gate

18

= I00 gates X 2T/gate

L4

,/

,kj

L :-_i

- :.- -,)

':,,,; '5

.-.:;:i,.:i

.=

= 200T ;

non-null z processing time = # non-null z gates X (5.4T/gate

+ 8T/gate>

= i00 gates X 13.4 T/gate

= 1340T;

total processing time = 1300T + 200T + 1340T

= 2840T.

This translates to:

time = 2840T x 80ns/T

= 227200ns -- 227,2_s

slow-down factor = 227.2_s

o.1

: 2272:1 slow down (for a ._ machine cycle)

This figure is much more realistic than the 600:1 figure obtained

before, but it is important to note that our inclusion of T-periods for

processing in this analysis does not begin to approach what is necessary

in the actual algorithm.

•W

.5

,4

L_

_ _I_ _

_ _I I _

I _ 'I_ I_ _ _ k_

We propose to iterate through the calculations one final time,

developing motivations for additions to the time estimates we have

presented and ultimately defining a realistic best case estimate

of the time required for performance of the algorithm.

To begin the analysis for this last iteration, we will modify

somewhat the allocation of timing between the x and z processing. By

this, we mean that the stepping down the output list and reading of the

output gate info word is not really a function of x processing but

belongs more properly in z processing. We will shift it into z pro-

cessing for one primary reason. The x processing pipelined read of

the outputs in the last analysis is not practical and really cannot

be done in that fashion. The practical implementation is: read of

one output; process the output; then loop back and read the next

output. So, in the first step, we have taken i0 T-periods out of the

x processing. (Time for read of CLINK and each of the output addresses

and info words.) At this point x processing consists of reading

only the x gate info word and requires 3 T-periods per gate.

As you will remember, the 3T estimate assumed that address

formation took no time. In actual fact, if we assume that the address

is in a local store register, address formation only takes the time

necessary to set up the busses to use that as the control-store address.

This adds i T-period. Thus to read the gate info word for an x requires

4 T-periods.

19

i>ii!

I

.J

-i

,J

,Iig,

i

/. r '"_,¢ 4

The next thing we need to do for x processing is to use the QM/I

micro-instruction execution capability to do a multi-way branch based

on the data in the info word. Since we want to branch on more than

the 7 bits available in the QM/I local store register 31 C-field, we

need some extra processing to set up the proper address. This pro-

cessing, plus the multi-way branch itself, requires 5 additional T-

periods. (The minimum nanocode segments are given in Appendix C_)

Thus the basic x processing set up takes 9 T-periods. Based on our

implementation, the actual x processing takes from 2 T-periods (for

a gate not properly queued; i.e., no action necessary) to 9 T-periods

for a gate requiring more complex processing. The time for the most

standard processing (gate normally queued) is 5 T-perlods. Thus for each

x: set up, multi-way branch and x processing takes 9T + 5T = 14T.

The only remaining step is to set up for processing of z's for each

x and the set up (address formation) for processing the next x in the

queue.

The set up for z processing consists of calculating the address

of the CLINK word for this gate (gate info word address +_ then

reading in CLINK to get the address of the output list. This processing

takes 6T. The end of x processing for the current gate consists of

setting up for the next x. This involves calculating the address of

LINK and then reading the value of LINK. This takes 6 T-periods.

Thus, the total x processing is given by:

Xtotal = Xset up + _ranch + Xproc + x + xz set up next

= 4T + 5T + 5T + 6T + 6T

Xtota I = 26T (6)

20

7

?

i_

I
i •'_

' :_ii

" .- L : ,;,

21

Z processing consists of setting up for the processing of the current

output, doing the actual processing, and doing the preliminary set up

for processing the next output. The first part consists of reading the

address of the gate info word for this output and then reading the gate

info word itself. This is then followed by the multi-way branch

(similar to the x processing multi-way branch). This operation takes 12T

(see Appendix C).

Actual z processing takes 2T for the null case, and from 5T to 18T for

the non-null case. To this 5-18T we need to add the time necessary to add

this z to the queue. This time is 6T. Thus, for non-null z processing,

using •.........._,= mu=_ _- case of 7_ for p__ng plus 6T for the queue

addition, we need 13T. So, for z processing itself we have:

null z processing = 2T;

non-null z processing = 7T + 6T = 13_

The final set up for next z is essentially included in the set up

for this z. The only thing that is not done is the testing if this

is the last output. We will assume the sign bit in the last output

is set to i. The time required to do this test is 4T if it is the last

gate and 8T if it is not. (We will use 6T for our figures based on

an average fan-out of 2.) Thus, the total z time is:

Ztotal = Zset up + Zprocess + Znext

= 12T + 2T + 6T (null z)

= 20T (null z)

= 12T + 13T + 6T (non-null z)

= 31T (non-null z).

(7)

(8)

,q

i

• ., _j

. _ _._

; : !_

: _._.!_._

- .6-' ' _.

.,,--_-;_:...._

' • t., i

We now have all the figures necessary to calculate best case slow-down.

As an aside, please note that the nanocode given in Appendix C will

not work if put together. The most striking example of the reason for

this is the processing to determine if this z was the last in the output

list. Remember we assumed the sign bit was set. This means that when

we read the gate info word, we would have to clear all sign bits before

the read. This is not accounted for in the nanocode of this example.

There is also no provision for testing the last x in the queue. But

as a best case timing estimate, these figures define the range of

numbers involved. So, the calculation of slow-down factor looks like:

x processing time = # x gates processed X 26T

= I00 gates X 26T

= 2600T;

= # null z gates X 20T

= I00 gates X 20T

= 2000T;

non-null z processing time = # no_-null z gates X 31T

= i00 gates X 31T

= 3100.

null z processing time

This translates to:

time = (2600T + 2000T + 3100T) X 80ns/T

= 7700T X 80ns/T

= 616000ns = 61_s.

Thus for a .l_s cycle machine, the slow-down factor is 6160:1.
/

22

i

r

• _ _L_ ¸

23

In summary, it is obvious that there are several parameters

which determine the slow-down factor for a given case. The parameters

are:

i.

2.

.

4.

system size in total gates;

number of gates in system which change value during a

cycle (average). This may be expressed as a percentage

of system size;

average fan-out per gate;

cycle time of the emulated syste_

For our analysis here we assumed that:

It

2.

3.

4.

system size = 2000 gates;

percentage of gates changing = I00 gates = 5%;

average fan-out = 2;

cycle time of the emulated system = 0._s.

In the following sections , we present some details of the algorithm

we implemented and the results of our timing studies. Since those

timing studies address a _s cycle time machine (I0 times slower than

the machine we assumed here) we can recalculate the slow-down for our

idealized implementation. It then becomes 616:1. Remember that this

does not take into account all of the necessary actions. It is thus

reasonable to expect that the slow down factor for a _ machine to

be best case 600-800:1 and for a ._s machine to be 6000-8000:1. In

sun,mary, for the slower machine , with a smaller system (2000 gates), the

LRC estimate of 500-600:1 is quite optimistic but still a reasonable figure.

+

•q

j

5+',J
,.+

." +.+'_.

: ,+ ..:\},

'+ :J+:}+i,'+ 2 ?

...%

IV. ADDITIONAL FEATURES OF THE ALGORITHM

The algorithm introduced in the previous section includes additional

elements which allow it to handle the types of situations expected in

real-world applications. Aside from handling all types of gates in

the same manner, and being able to quickly process gates without having

to review every input of every gate, this approach takes into account

the possibility for double queueing. If two gates share the same

output gate and both change value such that the output gate should

change, they will both independently queue the same gate for processing.

If this happens within a single logic level, it is quite possible that

the common output gate should in fact not be queued at all, since as a

result of both inputs its value should remain the same. To handle

this sort of case,the NASA LRC algorithm includes processing which pre-

vents unnecessary queueing, as well as a second set of flags (V2 and A2)

and a second queue linkage word (LINK 2) which are used as a means of

remembering the necessary data for processing an additional queueing

if in fact one is required. This latter situation arises when double

queueing is spread over two propagation cycles (two logic levels).

An additional feature of this approach is that flip-flop devices

are treated as ordinary gates with some additional special case con-

siderations. The flag FF is used to indicate a flip-flop device and

enaSles the algorithm to handle such a device effectively. Involved

in this process is the flag T, which indicates a trigger input for a

flip-flop, requiring a slight variation in treatment.

A list of the variables involved in this algorithm and their usage

is provided in Table IV-l, and a section of the algorithm dealing with

24

J

25

double-queuelng is detailed in Figure IV-I. It is entered only if during

the normal processing of an output z-gate, that gate's CNT value transi-

tioned into or out of zero. (Thus indicating that this z gate should be

queued for future x gate processing.) The variables of most concern here

are: I) the "properly queues" flag AI, which indicates that a gate is

queued for x processing, and when needed for double queueing enables

i'_ii

•,i_):st

• • :)

..O_j''

._-_

....;i.?_?

a gate to be "dequeued" without actually dequeueing the gate itself;

2) the "cycle queued" flag A3' which remembers in which propagation

cycle (C) this gate was queued for x processing (propagation cycles indi-

cated by C are equivalent to x queue processing cycles, and each repre-

sents the processing of one. logic level uf u_= =_=_=m_; _ _= _.......

value of the gate VI; and 4) the linkage variables LINK I and MLINK

used in the linked-list x queue whose ties between gates define the

course of any given processing cycle.

The variables concerned with the queueing of a gate onto the

second x queue include V 2, A2, A 4, and LINK 2. Although we imple-

mented the algorithm as given to us, we feel there are some functional

discrepancies involved in the manner in which these variables are used.

The concept presented here, however, is of more importance than the

details of its design in the algorithm. The need being addressed

here concerns the queueing of gates a second time. (This situation

arises when double queueing occurs over two consecutive propagation

cycles, as discussed briefly above.) The idea is to remember what

the value of the gate is at the time of the second queuelng, in

g

order to correctly process the gate when its first processing cycle

begins; and to queue the gate properly for a second processing. The

area of the flow in Figure IV-I encircled with dashed lines attempts

to accomplish these goals. The flag A 4 indicates that the second queue

is employed for this gate; A 2 is later to become the A I of the second

processing cycle, and indicates that proper queueing has occurred; and

26

i

.-_-_
• -"c

_3

...f

,

1

./'i

/? .i- .iI

_,: 2i

_?,:, ,!

i :./ ,|

• i

i
r .

V 2 remembers the current newly changed value of the gate. (The second

queue linkage involving LINK 2 and MLINK in the given algorithm does

not work properly when integrated with the normal linkage system using

LINK 1 •)

These additional features do cause extra overhead in the

execution of the algorithm, but they enable the algorithm to emulate

a wider range of real-world systems and to accommodate all the currently

foreseeable events which occur in gate level emulation.

£

J

"- d

"ii

:.!!

:!:i]

: ;3

.... ,.i:i,£::_

Variable

A 2

A 3

a4
Vl

V2

FF

T

CLINK

LINK 1

LINK 2

MLINK

C

T,ABLE IV-l:

27

Definition / Usage

"Properly Queued" Flag: Indicates Gate Queued For

X Processing.

A1 For Second Queue.

"Cycle Queued" Flag: Indicates Value Of C When Gate
Queued For X Processing.

Flag Indicating Gate Queued Onto Second Queue.

Current Output Value Of This Gate.

Gate Value For Processing Of Second Queue.

I:l:=n I ndle_finn A I=lin-I=lnn B_.vice.
l lli_l_ I I l_i._l._,._i.i_i.=. 1_ • • • -.l _ • ---I _

Flag Indicating A Flip-Flop Trigger.

Pointer Word Containing The Address Of The Output
List For Each X Gate.

Linked-List Linkage Word Pointing To The Next Gate In
The Queue (Zero If LastWord In The Queue).

LINK I For Second Queue.

Pointer To First Gate•Of The Next Queue (Each X-Queue

Cycle Starts A New Queue), And Zero If End Of Machine

Cycle.

Propagation Cycle (X-Queue Cycle)Indicator (Alternates
Value For Each Logic Level Procesed).

Definition Of Variables.

-!

]

:i

,%,

'.i

:i__:

:.u

I

I

I
I_

Figure

/No

.L 2nd Queue

i-,.o-iFlags:Set A4" L

A 2" 0. And V2 -91

i

II Set-Up2ndQueue

LinkageTo Include
This Gate In The Linked

• List: Set UNK2 - IW.iNK
And MLIHK • This Gate

ChangeGate
Value In 2rid
Queue:.Set

V2"C#2

|

'_ueu¢' It Onto l
I

Lestore This Z Gate _'_
nd Continue With)q

xt Z In CLINK Ust_

f
i

ComplimentSecondary I
'_ueuedPr.operly"FI_ e
Sd A Z - &Z " ,

Is This GateA >
Yes Flip-Flop Device7

(FF - 17)

;No

Is 'This Gate Currently >
In The Queue? No

(A|' 17) '_ueuV' It

N° / WasIt QueuedDuring) i(This Propagation .

•\ Cycle?(A _- C?)

"Dequeue" It[Yes

[compliment "Properly Queued" I¢Flag: Set A[- AI

1

1
Nojr is ThisGateStillProperly

_Oueued? IA I- 1?) /

i ,,

I Change Queue LinkageTo Include

ThisGateIn TheLinkedUsE
Set LINK[- MLINK And
MLINK • This Gate

ii

D/_CJNAI5 PAGE I$

D_ _EOOR QUAT,/Ty

IV-1 FlowOf DoubleOueueing Logic

28

RememberQueue J
Cycleey 5atting
A3-C

[

_ ii

!

i

i

:_ v'7_i__

V. IP_LEMENTATION OF THE ALGORITHM

In implementing the NASA LRC algorithm previously described, we

have used the unique micro-instruction decoding capabilities of the QM-I

as a means of efficiently handling all of the individual flag conditions

which arise in the course of normal processing. It is important to

recognize in this algorithm the inherent dependence upon individual

flag-bits and the large amount of processing necessary to handle them

properly. Conventional coding methodology requires these flags to be

tested and manipulated individually (which can be quite burdensome).

A great deal of speed and flexibility can be gained by combining all

of these flag-bits into one n-bit computer word, and subsequently using

this word as the address of a specific routine in memory written to

handle the exact bit pattern found in that arrangement of flag-bits.

Thus we associate one word of data with each gate in the system, and

we arrange that word so'that each bit is dedicated for use as a specific

flag. Then when the value of a flag-bit is needed to be known in order

that someaction may be taken, rather than reading each bit and testing

for one or zero, the entire set of flag-bits is taken together as a

"condition set" and used as the absolute address in nanostore of the

routine which performs the exact actions necessary under the conditions

specified by the flag-bits. In addition, when processing of that gate

changes one of these flags, the appropriate bit of that gate's '_info

word" is changed to reflect the latest condition of the flag. This is

very fast and very effective, but it does require a great deal of memory

(in this case, nanostore). For our use, however, this drawback is far

outweighed by the execution speed and flexibility gained.

29

Figure V-I gives an overview of the logic used to implement the NASA

LRC algorithm. The boxes containing an asterisk (*) or asterisks (**) include

3O

.r_

_J

'X

i___:_i/_

Figure

AddThlsZ-G,-ti
Into TheZ _ueue

Is TheZ-_ueue [mp(y?_ TM

I Load81ockWhichContainsThe J
NextGateIn Z QueueFromMS
Into C$

ProcessAll GatesIn ThisBlockIWhichAre In TheZ Queue

,, _

is The X-_ueueEmW?_Yes
(Is X • MLINK- 07) /

NowIn Control-Store? _/ :* Z-Gate 1.)

/*Is This Z-GateTheLast
. No (OutputGateF_r ThisX-Gate?

\ _ o,cu=_) /
, JYeS

V-I Overview Of Implementation Logic

i

]

?

/!

•!

" -'7 ,_

the type of processing described above. Before detailing these however,

it is first appropriate to examine the lay-out of the memory tables

used and the reasoning behind their structure.

Figure V-2 shows the structure of the "blocks" of gate data which

reside in main-store and are loaded one at a time into control-store

for processing. (Note that for an all control-store resident system

no loading of blocks nor pre-x-cycle z-gate processing is needed.)

In order to handle the most general case of system size and design,

we designed our emulation to handle systems larger than 6000 gates

(which is the largest system under this design to be totally control-

store pli t_^_,.resloen_) Tnls is accom shed the u_ u_• LLL_ U_U__nruu_[1

structure and the means to keep track of interblock connections as

follows. For each gate there are four 18-bit words which are reserved

for dedicated use. The first word is the"gate info word" containing

the flag-bits (detailed in Figure V-2) and the CNT counter for this

gate. It is the lower three bits of this word, concatenated with the

upper seven bits of the same word, which comprise the 10-blt nanostore

address used for branching to the various processing routines as des-

cribed earlier. It is of importance to point out here that the three

bits FF, T, and the "z or x" flag, are used as a "nanostore page address"

and therefore must be placed into F-register FIDX prior to branching

to any routine. This enables the use of the micro-instruction decoding

facility of the QM-I, which concatenates the 3-bit page address found

in FIDX with the 7-blt address found in the C-fleld of local store

register 31, to form a 10-bit absolute nanostore address. Thus the

decoding of all flag-bits for each gate can be done "instantly" by

31

. ;J

.7

]

,...:

Gate _1

Number_ u

'i
5

6

CLINK
Addresses

Info
Word

(See
Below)

zo

In The Structure
Shown Below

CLINK
Address

7--K+2

k Block

!

This Table 2
LocatesThe
AboveDefined 3
BlocksOf Gates
Within MS. 4

MS Location
Tabl...._ee

Absolute Block
MS

Addrtss Size

17 16]2 11

FlagbitUsedTo
Indicate EndOfCLINK
List For EachGate;,As
Well As For Transmitting

V]xThrough LINK1

Gate Info Word.

17161514131211109876 5 4 3

, l,vlv uC A Z_ C nused
,, I z

C A B

Note: FF - 1 For Flip-Flop"Gate"
T • 1 For Flip-FlopTrigger

X Or Z - 0 For Z And 1 For X

& LINKZ

210

FI IXI

Figure V-2 BLOCK STRUCTURE IN MEMORY

32

J

placing the gate info word into R31, and the B-field of R31 into FIDX,

and then invoking the micro-instruction decoding facility. IT_is causes

33

. -_!

• l

.i? t
?52.:i

, J

' ,z2i
2. _.
•.)_

: _i_ ,, _

a branch to a dedicated routine which sets/resets the flag-bits as

necessary for its exact input conditions, and then returns to a common

continuation location in the main processing routine.

The second and third words of the gate block structure are labeled

LINK I and LINK 2. These are used as linkage address words in the linked-

list x-queue structure which controls the flow of x processing. (LINK 2

is used only for secondary queueing as discussed in section IV). They

contain the block number and gate number of the next gate in the queue.

The fourthword is labeled CLINK and is the relative address of

the start of the list of output gates (z-gates) associated with this

x-gate. The number of output gates for each x-gate will vary from

gate to gate of course, but for sizing considerations in this study

we have averaged the fan-out factor at 2.0 output gates/x-gate. Thus

we need 6 words per gate in each block (the four words described

above and one word for each output gate). This gives an average size

of 36000 words/block for a block size of 6000 gates.

Because the blocks will generally vary in size, there is an additional

table in main-store dedicated to locating blocks inmemory. It is

indexed by block number and contains the absolute main-store address

of the start of each block and each block's size (as the number of

18-bit words in the block). This table is also shown pictorially in

Figure V-2, and is particularly useful in aiding the process of block

loading (from main-store into control-store and back again).

There is one more table of interest in this design. This is a

control-store resident "free core pool" table which is dedicated for

use as a linked-list queue. _en, during normal x-gate processing, an

output gate (z-gate) comesup for processing which does not reside in

34

the sameblock as the x-gate, then it becomesnecessary to queue such

z-gates for future processing (when the appropriate block is loaded

i
'%

a

f

i . .

I

? : ".2_'_1

:i i)}

into control-store). This free core pool queue is used to queue these

z-gates for "pre-x-cycle processing", and is termed the "z queue".

It is depicted in Figure V-3.

Now, returning to Figure V-I, the first action is to process

(pre-x-cycle process) the z-gates waiting in the z queue. So if the

queue is non-empty (and since the gates are ordered sequentially by

block number/gate number), the next z-gate in the queue dictates what

block should be loaded from main-store. When the loading is completed,

those z-gates in the queue which reside in this block are processed

as normal z-gates in the following manner: The CNT counter for each

z-gate is updated according to the value of the x-gate for which the

z-gate is an output. (If Vlx = i, CNTz is incremented, and if

Vlx 0, CNTz is decremented. For z-gates whose x-gate is in some

other block,. Vlx is passed as the sign-bit of the queue element

itself, as shown in Figure V-2, similar to the "end-of-CLINK" flag-bit K.)

If this CNT transitions into or out of the value zero, then the

z-gate becomes "non-null" and a branch is taken using the micro-

instruction decoding facility to the appropriate z-processing routine.

Upon return from this routine, the z-gate Nas been queued into the

x-queue (using LINK1, etc.) for future x-processing. Those z-gates

• -:1

:i ilii!

Figure

I_ I Start Of Free Core Pool
t

II]O [EndOf FrR Core Pool
(AlusoluteCS Addresses)

RO (Queue Pntr)

Absolute C°
Address

AbsoluteCS
/Vkklm

V-3 Output Gate

mEECO_POOf.

Block tl Gate f (End Of Queue)

ZK.2 "!

Bhc_ # Gate #

ZK.]

Block# Gate t ABS CS Addr

ZK Of NextZ

(Z) Oueuing

Each Queue
Element Is A
Member Of A
Two-Word-Entry
Unked-Ust:

Where Unk Word
Is An Absolute CS
Free Core Pool

Address indicating
The Nexl Element
In The Queue.
The last Bement
In The Queue
Contains -1
in The Unbvord.

Local-Store
R=jlster Zero (RO)
Contains The Absolute CS
Free Core Pool Address
Of 1he Latest Element

Tol_e Queue.

OKIG_NAIJ PAGE IN

.0]_ £OOR QUALITY

35

L_

, j1

// _,. %

36

whose CNT does not transition into or out of zero need no other processing,

so they (and the returned non-null z-gates) are simply restored into

the control-store block for future reference. This is the procedure for

normal z-processing and Qccurs in Figure V-I in the boxes marked with an (*)

Following the pre-x-cycle z-processing, we begin normal x-processing.

This includes the two loops and the same basic logic shown in Figure

III-I, with the actual x-gate processing (shown as the box marked with (**)

in Figure V-I) accomplished via the micro-instruction decoding facility.

Note an additional difference exists here, in that z-gates to be

processed for a given x-gate must be checked first to see if they

reside in the current block in control-store. If they do not, they

are added into the z queue for future processing. And if they are in

this block they are processed as described above for normal z-gate

processing.

The implementation of this algorithm has been coded in nanocode,

and the timing studies discussed in section VI and Appendix B for non-

control-store resident systems are entirely based upon this implementation.

For systems which are completely control-store resident (system size

6000 gates), the timing studies presented are based upon the normal x

and z processing loops Of this implementation, skipping the sections

of code dealing with z queueing. This is reasonably accurate as an

estimate of resident system timing considerations. However, the linkage

words and CLINK "addresses" in memory are still in "block number/gate

number" form, and hence incur additional unneeded overhead for absolute

address computation, etc. If this code were optimized to be a strictly

control-store resident emulation (instead of the generalized "handle all

cases" emulation now coded), the efficiency of processing could be signifi-

cantly increased, and perhaps a 20%-30% timing improvement realized.

VI. TIMING RESULTS

In order to gain an understanding as to the applicability of the

algorithm described in the previous sections, we derived two equations

37

which enable the generalized projection of the timing factors involved

for various kinds of systems. (The derivations of these relations and

examples of their use are presented in Appendix B.) As an initial,

"most simple" case, we examined systems which reside totally in control-

i;

_d

•"'n_

klt!i

° ,,

•<,-

,."::.'_._7::-.2..."j_

.-:_:(",

• 2'4. •"1

... ,v._ ;<

. ::.. >.:.;
..,:_I

: ,_:_ _

• , .°

• 5 , :i

:." _

store (and therefore need no data storage external_to control-store nor

the associated loading and linkage software.) The amount of time

necessary to emulate a single machine cycle is given in T-periods by

the relation:

Tresident = (68 + 35F)x + 29y

where F is the fan-out factor defined to be the number of output gates

per gate processed (or the number of z gates per x gate); x is the number

of gates changing value in the system; and y is the number of queue

processing cycles needed to emulate the data propagation associated with

a complete machine cycle. This can be thought of as the number of logic

levels in the system.

Figure VI-I displays this equation plotted for F = 2.0 outputs/

gate, for the value of x ranging through 5%, 10%, 15%, and 20% of the

system size. The datum of most interest here is that a single cycle for

6000 gates is emulated at a slow-down factor of 3,492:1 for a real

machine cycle of l_s, with 5% of the system changing. Notice the effect

of changing F from 2.0 to 3.0 outputs/gate in Figure Vl-2. A single

cycle for 6000 gates at 5% changing now results in a slow-down factor

of 4,322:1 for a _s machine cycle. This change from a fan-out factor

"I

• ,%2:._

",.)
-",_I

' '::i

_:- F2,;

.,??..2_i

I!

>..

I!

EL

N

r=,=l

J01:)l_-I UMO(]-MOI_

\

|

I I I I I I

SW Ul aUJ!l el:),_3

38

i

,!

, l, ",i
1

,,'_.,_:li

i-,,,I
,lo

i_,%

N
Im

E

II

>-

II

L,

i,--I
_o

i,,1%

e,;
c,,J

r--I

c:;
C'M

39

J0pe-I UMOG-M01S

I I I I I I

SW Ul atU!l alO_

,#

40

of 2.0 to 3.0 outputs/gate generally results in a 20% increase in slow

down factor. The data points for these curves are given in Table VI-I.

We can gain a more comprehensive understanding of how these curves

relate to one another by translating them into "sample time" (i.e., the amount

of time needed to emulate .i second of real time execution on a l_s machine).

Figure VI-3 shows the curves for F = 2.0 and 3.0 both for 5% of the

system changing and for 20% of the system changing. Notice that a

single sample for a 6000 gate system at 5% changing and F = 2.0,

requires 5.82 minutes, where the same sample at 20% changing requires

22.38 minutes. (Further data points are given in Table VI-2.) We

can also see that changing F from 2.0 to 3.0 increases the sample

time by the same 20% seen above.

It is perhaps most useful to view this data from an experimental

point of view, and to see how long it would take to run for example

I0,000 samples of .I second real time each. Figure VI-4 displays this

information. For a 6000 gate system with a machine cycle time of _s,

with 5% of the system changing, it takes approximately 40 days or about

1 1/3 months to run a I0,000 sample test with F = 2.0. The data points

for these curves are given in Table VI-3.

In addition to the above described "most simple" case, we expanded

our study to include larger systems whose size necessitates system

residence in main-store with "blocks" of gates being loaded into control-

store for processing. The equation for these systems in generalized

form is as follows:

41

.!

.i

i_._

i_. _ _,_
,7 _ y '_

\

\

selnu!w Ul atU!l alduJes

_o

]

,5

em

E

O

14%

i._

,o

"G

e_

t-

=L
i,--,I

em

E

i--I

I

I

\

(x0JddV)

Od

sqlu0w Ul aUJ!l
e,,,-i

\

II I1
I..I.I.i_

I I , I I I I I I

_8
c_

i.--I

o
m

s_(] Ul aUJ!l

42

8

J

,--4 e'_

8

ll,_

w_°

m

L

_n
el
lau.

N-.{

. i T
non-resident

= (# blocks in system) X {(44) X (4 + F) X

(block size) + 84 X (z prequeued) + 94 +

(z queued) X [72 + (25) X (n - I)] +

43

(68 + 35F)x + 29y}

where z prequeued, z queued, and n are variables associated with the

processing of output gates which reside in blocks other than that of

J
their input gates (see Appendix B for exact details). In order to

gain an appreciation for the meaning of this relation and the processing

involved in such an emulation system, we will consider a system with

only two blocks, each block sized at the maximum available control-store,

6000 gates. Thus we have a 12000 gate system. Assuming 5% changing

and F = 2.0, as above, we find that a single cycle on a _s machine

takes 260,579,630ns. This is a slow down factor of 260,580:1. A

single .i second real time sample would take 7.238 hours, so a i0000

sample test would require 8.26 years! As you can see this is not a

feasible approach. The reason these numbers are so high is that main-

store accessing is extremely slow. It requires 22 T-periods/word to

transfer from main£store into control-store, which means to load a

single 6000 gate block (with 6 words of data required for each gate) it

takes (22) X (6000) X (6) = 792,000 T-periods = 63.36ms. Hence this

overhead becomes quite prohibitive.

%,

• '%",

- h_L '

"3,: ._

t_=E

o_

.o= -_

leo
1.1.1I..i..

&i
!

m

I,--

I#1 oO
r,,..

oo

.4

/ __'_

r...l

i===I

N

• I

x

e._ r'v

II

ii

ii

_____} _ _ _ I|
_>,= _,,__ _6 >-

44

--I-

I.i_

4-

I!

J

.j

i

'i

j

ISi_ •

c_
c_

_0

c_

c_

c_

iml

r_

c_
_0

c_

rml

c_

O0

r_

C_
0_

c_

00

C_j

iml

c_

no "_
a_ C_

00

r_

CO

r_m
O0

c_

C_

O0

Lt_
N

q_

o -/| Qm
D

m_

° /IB X

Lt_

C; _n °rm °_,_
•_ °_ _ _

C_

O0

Lt_

q_

c_ c_

CL_
mi_w

c_

!
X

In
Q_

,,line

0

li

Li_

0
LL.

N
÷

X
A

LL
Lr_

÷

0O

I!

r_

r--
iml

Im

Q_
N

Om

C_

E
Q_

v_

C_

i!

45

C
o_

r-

r 1
r- 0

om

,lO

EE
_m Ol

I--- I--
I

Er_

I=:----
W

|

I

I--.

r-.. N

N

i,-,. N

r,-.

I',l,

r,,._

N

O0 .-.4

l'--I r-,-

odoe

N

,1,,I

I_,. oO
_N

!',,- llll

I""

-_-_

N

g,
E :N-,

II

e-

om

E

C

om

¢Y

O

I

O

¢-
O

46

i_/,!

el

r- O
em

EE
em em

EE_

I
m

I--

(3

(3

r,-I N

M_
m

N

N
_M

I_ om

, E'_

/ ×

N'_"

N

N

g,
;5 E'E_

N

r,.._

u4
N

_ N

.= E
(_ om

II
I,J-

e-
em

E

e-

o

I
m

O

47

.i"

.?.,

• l

ii

2._._i

_ _2_.:;._

i!

E

o o
l-u. e4 _ _

I

m

m

#--

48

r L

• :.f

t"

i,]

i _,'

VII. CONCLUSIONS

As we stated in the introduction, the intent of our implementation

was toprove the feasibility of using gate level emulation technology

in support of data collection for reliability studies of fault tolerant

°

digital avionics equipment. It is clear that to support statistical

measures, the key potential problem is the time necessary to execute

a sample run on the gate level emulation. If this time is too long,

the task of running a statistically significant number of samples

becomes overwhelming. We have therefore focused our feasibility

determination on the execution speed of gate level emulation.

49

As shown in Appendix B, our QM/I implementation results in a

1200:1 slow-down factor for a 2000 gate, control-store resident system

within the constraints given in that appendix. This datum is also shown

in section VI in the graphs although it is not explicitly noted since

the 6000 gate example given there is the limiting case. This 1200:1

slow-down compares very favorably with the best possible case for

slow-down shown in section III of 600:1, since the implementation

contains features which cause additional overhead for address calculation

and system partitioning into blocks. The maximum resident system of

6000 gates also falls in the reasonable range of 3500:1 slow down.

On the other hand, the partitioned system case, of which the 12000

gate, 260,500:1 slow-down is an example, is clearly not feasible for

any reasonable number of samples. Based on this, we conclude that the

gate level emulations should be restricted to control-Store resident

subsystems, which for the QM/I works out to a maximum of about 6000 gates. We do not

feel this is overly restrictive considering that we have seen gate level

simulations of current technology micro-processors which fall in the

h_

i

•o:'L

/, _ !I

i'_L_-:_

range of 2000 gates. Thus 6000 gates can represent a fairly substantial

subsystem. Furthermore, by restricting ourselves to completely resident

emulations, further economies in the implemented algorithm can be

achieved as mentioned in Section V. We estimate that we can achieve

about a 20-30% improvement in speed.

The primary conclusion we can make based on the implementation for

the QM/I is that gate level emulation is feasible to do and provides

the speed necessary for statistical studies of reliability.

Although the implementation we did was based on the QM/I archi-

tecture, the restrictions imposed by that machine do impose a limit

on what is achievable. Examples are the 6000 gate limitation and the

additional overhead necessary to decode ten bits rather than the seven

that the QM/I is set up for. Three possibilities come to mind in terms

of providing the emulation support capability for the final facility.

The first of these is to consider making hardware modifications to the

QM/I. This could include expansion of the maximum permissable control-

store size or the addition of a bus to connect main-store and control-

store directly. Secondly, other micro-programmable machines may be

more amenable to the application. And finally, the possibility of

building a special purpose, gat_ level emulation machine should be

considered. Such a machine might be readily assembled from 2900 series

chips. All three of these possibilities will be considered in the second

phase of the contract.

50

:4

I

VIII. REFERENCES

I. qM-I Hardware Level User's Manual, Nan.data Corporation,
March 1976.

2. MULTI Micromachine Description, Revision i, Nan.data

Corporation, March ii, 1976.

. Digital Avionics Design and Reliability Analyzer,

Feasibility Study Report, MCR-79-663, Martin-Marietta

Aerospace Corporation, November 1979.

51

&i

L_

,'74

-?& ,_i:

::'X:2-!

APPENDIX A

UNIFORMITY OF GATE TRFAT_E._T

One of the primary benefits of the NASA LRC gate level emulation

algorithm is the concept of gate processing independent of the function

of the gate itself. What this means in practical terms is that the

algorithm does not need to keep track of the gate type and can handle

ANDs, ORs, NANDs, and inverters all in exactly the same fashion. This

appendix is intended to provide a brief description of how this is

possible by discussing a few examples to illustrate the processing

done and decisions made.

A-I

In order to process the gates, two values are required. The first

represents the current value of the gate. We will call this V. The

second quantity relates to the number of inputs of the gate. We will

call this value CNT (for count). This number is the key to the pro-

cessing and the distinction as to type of gate is characterized by the

initial values assigned to CNT and V.

In operation, whenever an input to a gate changes value (from 0 to

i or vice versa), the quantity CNT is operated on. For the 0 to i change,

CNT is incremented by i. For the 1 to 0 change, CNT is decremented by i.

The gate whose CNT is being updated will change value whenever CNT

transitions either into or out of 0. That is, if either the old value

of CNT is zero (before increment or decrement) or the new value of CNT

-is zero (after the increment or decrement), then the value V is changed

(0 to I or 1 to 0 depending on current value). A few examples will

best illustrate this.

,!

•k

/ Ci

• !i,?_

i ::::';

-: .2 '!
i ?':'!

• '/ ._

A-2

Example 1 : 3 input AND 8ate

V:A.B'C

The description of the action of the 3 input AND gate is best described

by the follo_ing state diagram.

I

_GoesFrom _ "n_Ut g_Z --_u_ g'_ Z

|

V_ue V- g] Vzlue V-!

Note that the left to right arcs represent an input going from 0 to I

while the right to left arcs represent an input going from I to 0.

When we get to the rightmost state, all inputs are I and hence the output

V is I. In all the other states, at least one input is 0 and the

output V is 0. Now suppose we let CNT = 0 for the case where all

inputs = I. The state diagram with CNT values in place of number of

inputs = 0 is:

I

ecrementC _X

Value V- B] Value V-!

Note that the arcs on this diagram represent exactly the same as on

the previous diagram; i.e., left to right is an input going from 0 to 1

and right to left is an input going from i to 0. The transition of

"i

J

:5

:J

: •L

A-3

CNT into and out of 0 occurs across the dotted line and value V does

indeed change when we cross this line. From this diagram, we see that,

to initialize CNT and V for an n-input AND gate, we first assume all

inputs are 0. We then set CNT = -number of inputs and V = 0. After

initialization, we can blindly follow the specified processing and

the proper gate output value will be produced.

Example 2 : 2 input NAND gate

B--I J

The NAND gate is a simple extension to the AND. The only difference is the

value of V. V will be 1 to the left of the dotted line and 0 to the

right. Thus a 2 input NAND gate state diagram looks like:

I
l

!

ValueV-! i ValueV-_

Initialization conditions are CNT = -number of inputs and V = I,

!

Example 3 : 4 input OR sate

A
B
C
D

_ V=A+B+C+D

i_ :,_ _,_

i j

{

x L:

• :, . q

The state diagram for the OR gate looks like:

i

In_t 1-_ nput l-'-

Value V-J' I Value V-I
I

To isolate the CNT = 0 node in this case, we need to isolate the state

to the left of the dotted line. Thus the CNT state diagram looks

like:

.,_.t CN/" .._e_ent CAn. .,_ctement C,_,. .rement C/w

Value V-,g ! Value V-I

Thus the initial condition (all inputs 0) for an OR gate are: CNT = 0,

V = 0. The extension to a NOR is made simply by using CNT = 0, V -- 1

for initial conditions.

Example 4 : 2 input XOR gate

The state diagram for the XOR gate is:

Vdr I V-! I V.ff

A-4

?

'4

?:_

. "7;• "-7

A-5

The CNT state diagram becomes:

I I

This again is a simple case for the general algorithm. Initial

values for the two input cases are CNT -- I, V -- 0. This is also the

case for the general "odd" number of inputs type gate (i.e., 1 is produced

for an odd number of inputs = I). The only difference is that instead

of signed arithmetic, modulo arithmetic is used (-1 mod 2 = I).

Based on these examples, the initial conditions (assuming all

inputs O) for the most common gates are given in Table A-I. The

inverter can be handled as either a one input NAND or a one input NOR.

Type Initial Value

Gate CNT V

AND -number inputs 0

NAND -number inputs 1

OR. 0 0

NOR 0 1

INVERT -I 1

INVERT 0 i

XOR -i 0

NXOR -i 1

Table A- 1

/!

q

i. _?,

/!

'i

Once the initialization has been done, the processing of each

gate is exactly the same, regardless of type. In addition, the concept

is flexible enough to be able to handle more non-standard type gates

(e.g., the odd number of input counter which could be used for parity

generation).

A-6

APPENDIX B

DERIVATION OF EQUATIONS

This appendix explains the basis for the system "emulation time"

equations used in this report. Two basic equations are derived herein,

the first for systems residing totally in control-store (e.g., system

size _ 6000 gates); and the second an approximation for larger systems

which necessarily have only part of the system in control-store and the

remainder in main-store. This appendix first explains the former of

these and then gives some examples. Following this is the derivation

of the second equation and then an example of its usage.

It should be understood that these equations are derived from the

actual implementation of the algorithm described in section V.

The given timing considerations are simply the sum of the individual

T-periods involved in executing the algorithm. (Thus when it is stated

that x-processing takes 46 T-periods, this comes from examining the

code itself. Recall that one T-period is the basic unit of time for

nanocode, and is defined to be 80ns).

B-I

- L

•/ 5]

/

i

•_ ,, _44

i i:**¸_!

B-2

I. DERIVATION OF THE EQUATION FOR CONTROL-STORE RESIDENT SYSTEMS

Given: I) x-processing requires 46 T-periods/x and 29 T-perlods/

logic level in the System (using 5 T-periods for

most common case processing routine);

z) z-processing requires:

62 T-periods/non-null-z

and 35 T-periods/null-z

Where non-null-z's are those output gates whose counter (CNT)

transitions into or out of zero as it is processed during normal z-

processing. This results in that z gate being queued as an x-gate for

processing in a future cycle. Null-z's are z-gates whose counter

does not transition into or out of zero and hence cause no further

action to be taken. In addition the last z processed for each x

takes 5 T-perlods less than the other z's, hence: -5 T-periods/x.

Adding these together we get

Tresident = (46 - 5)x + 62X (# non-null z's) + 35 X (# null-z's) + 29y

with y = # logic levels in the system. (I)

Now consider that

i) the fan-out factor F =
total # z's

total # x's
= # z's/x

and ,'2 _'_L,=__^_**=# non=null z's is _-+_.11,, equal _n _h=

number of x's since each x comes from a non-null z.

ii!!i

• |

;!

L_

J

il

_'#,

S

_ LI_

_ence:

so

F = z/x

(# null z's) + x = total # z's

(# null z's) + x = xF

null z's = xF - x = x(F-l). (2)

Substituting equation (2) into equation (i) we get:

T = (46 - 5)x + 62x + 35[x(F - I)] + 29y

= (41x + 62x + 35xF - 35x + 29y

= 68x + 35xF + 29y

.'. Tresident = (68 + 35F)x + 29y.
(3)

Equation (3) is the general form of the control-store resident

system equation. Now for the following examples let us assume that 5%

of the system changes at any given time. Thus

x = (.05) X (system size) (3.1)

Level 1 2

2

B-3

Additionally, in order to estimate the value y, the number of logic

levels (or x-queue cycles), we need to make an assumption concerning the

system itself• To facilitate this assumption, we will deal with an

intuitive concept called system shape• We assume the system is in

general rectangular when the logic levels are plotted across the top

of the diagram and the gates per level down the side. For example,

the RS flip-flop below is square (2 logic levels w/2 gates/level)

Logic

,I

ri

o

i

_ i_. _._

_: i'_i

/'.'i

_-4

Now, we recognize that, for larger systems, the general shape

will be a non-square rectangle with the long side in the vertical

direction; i.e.,
P

Where P (3

However, the algorithm will translate feedback (as in the flip-

flop shown before) as additional logic levels. Because of this, the

general shape of the system, as seen by the algorithm, will become more

square. Therefore we will assume for the following examples that the

system is square so that the number of logic levels (y) = number of

gates per logic level = ,/system size . (3.2)

Combining (3), (3.1), and (3.2) with a fan-out factor of

F = # z's/x = 2.0 we get:

T = (68 + 35(2.0))(.05)(System Size) + 29/system size
resident

Hence:

T = (6.9)(System Size) + 29#system size
resident

Example I: System Size = 2000 gates:

Tresident = (6.9)(2000) + 29(20_6_)

= 13800 + 29(44.725)

= 15097 T-periods = 1207760ns

Or a slow down factor = 1207.8:1

for a l_s machine cycle. (12,077.6:1 for .l_s machine)

(3.3)

L_̧i_

Example II: System Size = 6000 gates:

T = (6.9)(6000) + 29(60_6_)
resident

= 41400 + 29(77.46)

= 43646 T-periods = 3491680ns

Or a slow down factor = 3491.7:1

B-5

,":;::4"!

-?' _!

for a _s machine cycle. (34,916.8:1 for .I_ machine)

:J

k ,..

¸..22̧ _

• 6:" i

-i_-7 _
.._._. iI

i¸ , _i_

II. DERIVATION OF THE EQUATION FOR NON-CONTROL-STORE-RESIDENT SYSTEMS

In order to accommodate large systems whose size prohibits

resid_mce of the entire system in control-store, in this emulation

"blocks" of gates (large tables of gate data) are loaded into

control-store one at a time for processing, while the remainder of

the system being emulated resides in main-store. When a block is

loaded, the first processing necessary is that needed for z gates

residing in this block which were queued by previous x gates in other

blocks. This uses an additional queue, dedicated to this situation,

and so we have termed this initial z processing "prequeue" processing.

So we define "zprequeued"as the number of z gates processed in this

prequeue phase. Similarly, "z queued" is the number of z gates queued

during the normal processing of each block onto this dedicated z gate

queue.

Now, given that:

I) it takes 22 T-periods/word to transfer 18-bit words

from maln-store into control-store (and visa versa),

with an overhead of 28T-periods per block;

2) Pre-queue processing of z's takes:

84 X (z prequ_ued) + 66;

3) there are 4 words/gate in the memory tables plus one

word for each output gate (z). Assume a fan-out factor

z's/x = F. Then 4 + F words are needed in memory

per gate.

B-6

B-7

So to begin with, equation (4) below accounts for the loading of the

new block from main-store into control-store, and the processing of

z's which were queued by someprevious block. All of this occurs

prior to the normal x and z processing:

T = (44) X (4 + F) X (block size) + 84 X (z prequeued)
pre

+ 94. (4)

Equation (4) will be in effect for each block as it is loaded, and includes

the restoration of each block to main-store.

In addition we must consider the processing of gates in the block

while it is in control-store using equation (3).

Furthermore, subroutine ZQUEADDis used to queue z gates who

reside in blocks other than the current block in core (onto the dedicated

z queue). In this process each element in the queue is comparedwith

the z being placed onto the queue to ensure sequential ordering of

the queue (by block numberand gate number). This searching takes

25 T-periods for each queue element searched which does not yield the

position for the new z. Hence if there are m elements in the' queue

and n of these are searched for each z being added (including the

element which reveals the location for the new z), we must add

25 X (n-l) T-periods for each z placed onto the queue. Additional time

is needed as well, but the searching accrues most of the queueing time.

Thus for each block:

Tzqueadd = (Z queued) X [72 + (25) X (n-l)] (5)

::!!

},!

!

<,_

, _

i

. ,

i ,,!t
-..::.=

..<.:-,_
:. "._

.

1
.2,

' ' :'<i

B-8

Hence if we combine equations (3), (4), and (5) we arrive at what

seems to be a reasonable approximation equation for systems of more

than 6000 gates:

T
resident

T
pre

T zqueadd

T
overall

= (68 + 35F)x + 29y (3)

= (_) X (4 + F) X (block size) + 84 X (z prequeued)

+ 94

(z queued) X [72 + (25) X (n - i)]

(4)

(5)

+ T + T X (# blocks loaded)
= (Tresident pre zqueadd)

(Where Tresident is interpreted such that x and y are associated

with block size instead of system size)

Substituting we get:

T = (# blocks in system) X {(44) X (4 + F) X (block size)

+ 84 X (z prequeued) + 94+ (z queued) X [72 + (25) X (n - i)]

+ (68 + 35F)x + 29y} (6)

Equation (6) is the general form of our equation. Now for the

following example, we will make some assumptions concerning the system

under consideration. First we need some way to approximate, as closely

as possible, the number of output gates (z's) which are prequeued for

a block by other blocks, and as well, the number which are queued by

each block. If we assume a square system (as discussed previously for

the resident system configuration) then the number of outputs for a

block = /block size Additionally if 5% of those outputs are changing,

then we can assume 5% of /block size as a reasonable estimate for the

g

number of z's to be prequeued for and/or queued by a given block.

,J

Thus: z prequeued = z queued = .05/block size (7)

Similarly we can say that the number of logic levels in the system

= y = /block size (8)

(based upon a square system configuration). Now we must gain an

understanding of n, the number of elements in the queue which are

B-9

searched in order to add each z queued into the queue. We know from

(7) above that for each block, 5% of /block size

queued by that block. Thus (# blocks in system) X (.05/block size)

is the number of gates

gives the maximum length of the z-processing queue at any time. Now

we further assume that on the average, 50% of the queue needs to be

searched for any given z.

Hence: n = ½(# blocks in the system) X (.05/block size) (9)

Combining equations (6), (7), (8), and (9) we get:

T = (# blocks in System) X [(_4) X (4 + F) X (block size)

+ (84) X (.05/block size) + 94 + (.05/block size)

X {72 + (25) X [(½) X (# blocks in System)

X (.05/block size) - I]} + (68 + 35F)x + 29/block size].

Combining terms gives:

T = (# blocks in System) X _4 + (44) X (4 + F) X (block size)

+ (.05/block size) X [156 + (12.50) X (# blocks in system)

X (.05/block size) - 25] + (68 + 35F)x + 29/block size }

= (# blocks in System) X [94 + (44) X (4 + F) X (block size)

+ 7.8/block size + (0.03125) X (# blocks in system)

X (block size) - 1.25/block size + (68 + 35F)x +

29/block size].

,i
*•4_,..?

• ;,4

So T = (# blocks in system) X {94+ (block size) X [(44) X (4 + F)

+ (0.03125) X (# blocks in System)] + 35.55/block size

+ (68 + 35F)x}. (i0)

B- i0

-?

: d

. _.-,_
2 ,i

: ' £

. .,:.3

.% ._.

!
,. !..:

• , , q

• L"

. ;7.

i

i L °:

I: : ::Yl

• L "'4

Equation (I0) is valid for all x and F in all systems meeting our

initial assumptions. But in general we wish to use this as an aid

in determining if this type of system is feasible. Hence let us

further.assume that the number-of gates changing in the system at

any given time is 5%. Thus x = 5% of the block size. Furthermore,

assume a fan-out factor of two output gates per gate so F = # z's/x

= 2.0. Substituting these into equation (I0) we get:

T = (# blocks in System) X {94 + (block size) X [(44) X (4 + 2.0)

+ (0.03125) X (# blocks in system) + (.05) X (68 + 35 X 2.0)]

+ 35.55/block size }.

In simplifying this equation, for the purpose of understanding the

nature of this relation and its applicability to real systems, we assume

the most simple case in which block processing occurs sequentially

without interblock feedback. This means that the total system size

= (# blocks in the system) X (block size), and hence we can substitute

system size into the equation for the term which contains this product.

Realizing that this is not the general case, it is understood that

for more complex systems_ the time T will be greater than that which

is given in this equation.

Thus by combining terms and substituting system size appropriately

we get :

T = (# blocks in System) X [94 + (0.03125) X (system size)

+ (270.9) X (block size)+ (35.55_block size)]. (II)

B- Ii

i

Equation (Ii) gives T (in T-periods/cycle) for simple case systems

with F = 2.0 and 5% of the system changing. An example of its use

follows.

'4

:!i
J

• :.,-j

: .2 :;

",f. • _;o

• • ,+ .

Example of Non-Resident S_stem:

System size = 12000 gates.

Block _ize = 6000 gates.

(hence # blocks = 2)

T = 2_4 + (0.03125)(12000)+ _70.9)(6000)+ (35.55)(77.46)]

= 2_4 + 375 + 1,625400+_753.7)

= 2(1,628,622.7) = 3,257,245.4 T-periods

= 260,579,630ns

Or a slow down factor of 260,580:1 for a _s cycle machine.

_,605,796:1 for a ._s machine)

Compare this to the 3491.7:1 slow down for a resident system of

6000 gates. (34,917:1 for ._s system)

APPENDIXC

NANOCODE FOR BEST CASE TIMING ESTI_IATE

This appendix contains the "minimum" nanocode to implement the

processing necessary for the algorithm as defined in section III.

structure shown in Figure 111-3 is assumed and the following Local

Store (LS) register assignments are also assumed:

C-I

The

LS re_ister contents

x •address of current x gate info word

-,|

•.iJ
.,J ,_

-:,.}?

°,.,_

2:.-_

,,.-.,

,,/,,

Y

z

w

a

b

address of address of current z gate info word

address of current z gate info word

MLINK

constant integer 2

scratch

i

!

• i•

C-2

The x-gate processing (read of info word) and multi-way branch assumes:

gate info word address in LS register x.

XPROC: BRANCH(N. + i)

KA= x

KB= 31.

X... KA + FCIA, KB ÷ FCOD

4T

5T

•X..

• eSe READ CS (CIA) , GATE CS,

READ NS, GATE NS

e e,e

X.. • B ->FIDX

•X. • INCF ÷ FIDX

•.X. LOAD NPC(CS)

...S READ NS, GATE NS

Set up to read info word into

R31.

CS bus wait.

R31÷ gate info word.

Set up top 3 bits of NS address.

A I in bit _ signifies x processing.

Set up NPC for branch based on

FIDX and top 7 bits of gate info

word.

Branch through micro-op-code.

9T

A

j_

7:

.a A (_

.:

:2.1.!
"- -:_

• .:,:)
i12:. I

-7!

:'2!

_""<2
-, .::5
/ . -] =_

p

..- ::.-...:

C-3

Read of CLINK for this x assumes:

- gate info word address is in LS register x

- constant 2 is in LS register a

- scratch register is LS register b

- gate info word address for next output (z gate) is in LS register z

6T

.... BRANCH (ZPROC)

KALC = ADD

KA-- x

•KB = a

KX=b

KT = y

X... KB + FAIR, KA + FALL,

KX + FAOD

•S.. GATE ALU, KT + FCOD,

KX + FCIA.

..X•

...X READ CS(CIA), GATE CS,

READ NS, GATE NS

Set up to get b = x+m (z = x+2)

Register b ÷ x+2 (addr CLINK into

b). Set up to read CLINK value

into y.

CS bus wait.

y ÷ CLINK (address output gate

list).

6T This then proceeds to Z processing (ZPROC).

);i

e

i!
:i

k_
l

LLi

• 4!

!i

;.]

C-4

Set up for next x-gate assumes:

- current gate info word address is in LS register x

- scratch register is LS register b

6T

.... (xPRoc)

KALC -- INCR LEFT

KA=x

KB=b

X KA -_ FALL, KB ÷ FAOD,

SET CIH

.S.. GATE ALU, KB -_ FCIA,

KA -_ FCOD

.oK.

...S READ CS(CIA), GATE CS,

READ NS, GATE NS

Set up to increment address to

get addr of LINK.

Scratch register b + x+l. Now

set up to read that LINK.

CS bus wait.

x ÷ address next gate info word

(LINK of current word).

Then go to XPROC.

6T

.!

/I

• ,

•i
' f.

L!

H •

i° ii

C-5

Z-gate processing set up and branch assumes:

- address of the address of this z gate inf. word is in LS

register y

- address of this z gate inf. word in LS register z

ZPROC: BRANCH(N. + I)

KALC = INCR LEFT

KA=y

KB=z

KX = 31.

JA

4T

3T

X• • •

X •• L•

• •Se

•.•X

•ee•

Xee•

eSeo

.oK•

••ee

Xeee

•See

KB ÷ FCOD, KA÷ FCIA,

KA ÷ FALL, SET CIH

F_.÷ FAOD

READ CS(CIA), GATE CS,

GATE ALU, READ NS

KB ÷ FCIA, KX ÷ FCOD,

GATE NS

BRANCH(N.+I)

READ CS (ClA), GATE CS,

READ NS

B ÷ FIDX, GATE NS

LOAD NPC(CS)

READ NS, GATE NS

Set up to read gate inf. word

for this gate; and to incre-

ment the address to point to

next gate address•

Want to write the new address back.

Register z ÷ addr gate inf.

word. y ÷ y+l (Next gate addr).

Set up to read gate inf. word

into R31.

CS bus wait.

R31 ÷ gate inf. word for this z.

Set up top 3 bits of NS address•

Set up multi way z branch.

And go.

12T

"/!

•L._

r_.

• I

C-6

Addition of z-gate to link queue assumes:

- This z gate info word address is in LS register z

6T

- Scratch register LS is register b

- MLINK is in LS register w

: BRANCH (N.+I)

KALC -- INCR LEFT

KA= z

KB=b

KX=w

KS = PASS LEFT

X... KA ÷ FALL, KB _ FAOD,

SET CIH

.S.. GATE ALU, KB ÷ FCIA,

KA -_ FCID,

KA÷ FAIL

• °X•

...S

G(G KS); G + KALC

KX ÷ FAOD

WRITE CS (CIA) ,

GATE ALU,

READ NS, GATE NS

Set up to find addr of LINK

for this z.

Scratch register b + addr LINK.

Now set to write MLINK into this

LINK,

And to set MLINK to address of

this z info word.

Change ALU to PASS LEFT this gate

info word addr to MLINK.

Set LINK to MLINK. Set MLINK to

addr of this gate info word;

And continue.

6T

For each x-gate, the last z output test assumes:
- LS register contains address of this gate info word

- bit 17 is set for the last z in list

C-7

1

•4

•> ,; "3

i
i1_'!

:I

: i

,il

4/6T

2T

4/8T

.... BRANCH (XPROC)

ALT BRANCH

KALC = PASS LEFT

KT = SIGN

KA= z

X... KA ÷ FAlL

.X.. LOAD NPC (SEQ)

..S. READ NS, GATE NS(T)

_oS READ NS, GATE NS

.... BRANCH (ZPROC)

S... READ NS, GATE NS

Test sign bit.

ALT. BRANCH to next word.

Branch to XPROC for sign = 0.

Otherwise continue to N.+I.

Narwhal Aeronaut,_s and
Soace A(:lmlr, strat_n

Report Documentation Page

1. Report No.

NASA CR- 181641

4. Title and Subtitle

Digital

7. Author(s)

2. Government Accession No.

Avionics Design and Reliability Analyzer

9. Performing Organization Name and Address

Martin rlarietta

Denver, CO 80201

12. Sponsoring Agency Name and Addre_

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

15. Supplemen_w Not_

Technical Monitor: Gerard E. Migneault
Langley Research Center

3. Recipient's Catalog No.

5. Report Date

February 1981

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-03

11. Contract or Grant No.

NASI -15780

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

16. Ab_mct

This document contains the description and specifications for a digital

avionics design and reliability analyzer. Its basic function is to provide
for the simulation and emulation of the various fault-tolerant digital avionic
computer designs that are developed. It has been established that hardware

emulation at the gate-level will be utilized. The primary benefit of

emulation to reliability analysis is the fact that it provides the capability
to model a system at a very detailed level. Emulation allows the direct

insertion of faults into the system, rather than waiting for actual hardware

failures to occur. This allows for controlled and accelerated testing of

system reaction to hardware failures. There is a trade study which leads to

the decision to specify a two-machine system, including an emulation computer
connected to a general purpose computer. There is also an evaluation of

potential computers to serve as the emulation computer.

17. Key Words (Suggested by Author(s))

Reliability Analysis
Digital Emulation

18. Distribution Statement

Uncl assi fi ed-Unl imi ted
Subject Category 62

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of pages

153

22. Price

NASA FORM 1626 OCT 86

